
z/OS

JES2 Installation Exits

SA22-7534-03

IBM

z/OS

JES2 Installation Exits

SA22-7534-03

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 303.

Fourth edition, September 2002

This is a major revision of SA22-7534-02.

This edition applies to Version 1 Release 4 of z/OS (5694-A01), z/OS.e Version 1 Release 4 (5655-G52), and to all
subsequent releases and modifications until otherwise indicated in new editions.

Order documents through your IBM® representative or the IBM branch office serving your locality. Documents are not
stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . vii

Tables . ix

About this document . xi

Summary of changes . xv

Chapte r 1 - introduction . 1

Chapte r 2 - writing an exit routine 9

Controlling the loading of installation-defined load modules 25

Enabling an exit . 29

Sample exit routines . 31

Multiple exit routines in a single module 33

Testing your exit routine . 35

Tracing status . 43

Establishing installation-defined exits 45

Hints for coding JES2 exit routines 47

Chapte r 3 - IBM-defined exits 49

Exit 0: pre-initialization . 59

Exit 1: print/punch separators 63

Exit 2: JOB JCL statement scan 69

Exit 3: JOB statement accounting field scan 73

Exit 4: JCL and JES2 control statement scan 81

Exit 5: JES2 command preprocessor 87

Exit 6: JES2 converter exit (subtask) 95

Exit 7: control block I/O (JES2) 101

Exit 8: control block read/write (user, subtask, and FSS) 105

Exit 9: output excession options 109

Exit 10: $WTO screen . 113

Exit 11: spool partitioning allocation ($TRACK) 117

© Copyright IBM Corp. 1988, 2002 iii

Exit 12: spool partitioning allocation ($STRAK) 121

Exit 13: TSO/E interactive data transmission facility screening and
notification . 127

Exit 14: job queue work select – $QGET 133

Exit 15: output data set/copy select 137

Exit 16: notify . 143

Exit 17: BSC RJE SIGNON/SIGNOFF 147

Exit 18: SNA RJE LOGON/LOGOFF 151

Exit 19: initialization statement 155

Exit 20: end of input . 159

Exit 21: SMF record . 163

Exit 22: cancel/status . 165

Exit 23: FSS job separator page (JSPA) processing 169

Exit 24: post initialization . 173

Exit 25: JCT read . 177

Exit 26: termination/resource release 181

Exit 27: PCE attach/detach 185

Exit 28: subsystem interface (SSI) job termination 187

Exit 29: subsystem interface (SSI) end-of-memory 191

Exit 30: subsystem interface (SSI) data set OPEN and RESTART 193

Exit 31: subsystem interface (SSI) allocation 197

Exit 32: subsystem interface (SSI) job selection 201

Exit 33: subsystem interface (SSI) data set CLOSE 205

Exit 34: subsystem interface (SSI) data set unallocation 209

Exit 35: subsystem interface (SSI) end-of-task 213

Exit 36: pre-security authorization call 215

Exit 37: Post-security authorization call 221

Exit 38: TSO/E receive data set disposition 227

Exit 39: NJE SYSOUT reception data set disposition 231

iv z/OS V1R4.0 JES2 Installation Exits

Exit 40: modifying SYSOUT characteristics 235

Exit 41: modifying output grouping key selection 239

Exit 42: Modifying a notify user message 243

Exit 43: APPC/MVS TP selection/change/termination 247

Exit 44: JES2 converter exit (JES2 main) 251

Exit 45: Pre-SJF service request 255

Exit 46: Modifying an NJE data area prior to its transmission 259

Exit 47: Modifying an NJE data area before receiving the rest of the NJE
job . 265

Exit 48: Subsystem interface (SSI) SYSOUT data set unallocation 269

Exit 49: Job queue work select - QGOT 273

Appendix A. JES2 exit usage limitations 277

Appendix B. Sample code for exit 17 and 18 279

Appendix C. Job-related exit scenarios 283

Appendix D. Accessibility . 301

Notices . 303

Glossary . 307

Index . 321

Contents v

vi z/OS V1R4.0 JES2 Installation Exits

Figures

1. Areas of JES2 Modification . 2
2. A JES2 Exit . 4
3. EXIT Point Variations. 5
4. JES2 and FSS Address Spaces . 12
5. Methods of Packaging an Exit Routine . 26
6. Example of Assembly and Link-Edit of a Installation-Written Routine 29
7. Example of an Exit Routine Employing a User Defined Exit 30
8. Example of Providing Multiple Exits within a Single Load Module 33
9. Exit Routines Load Module . 36

10. Exit Placement . 37
11. Load Module Initialization. 39
12. Job Input Sources . 289

© Copyright IBM Corp. 1988, 2002 vii

viii z/OS V1R4.0 JES2 Installation Exits

Tables

1. JES2-Provided Global Assembler Variables (&VERSION and &J2VRSN) for Currently Supported
JES2 Releases . 18

2. Directed Load and Use of Modules Based on LOADMOD(jxxxxxxx) STORAGE= Specification 25
3. Exit Selection Table . 49
4. Exit Implementation Table . 56
5. Selected JES2 Job Control Table Fields . 74
6. Old/New Comparison of JES2 Commands . 88
7. Security Function Codes . 218
8. Security Function Codes . 223
9. Reader and Converter Exits Usage . 277

10. Job-Related Exits . 284
11. $JCT/JMR Definitions . 288
12. Job Input Service Exits . 290
13. Conversion Phase Processing . 292
14. Execution Phase Exits . 293
15. Spin Phase Processing . 296
16. Output Phase Processing . 296
17. Hardcopy Phase Processing . 298
18. NJE Hardcopy Phase Processing . 299
19. Purge Phase Exits . 299

© Copyright IBM Corp. 1988, 2002 ix

||

x z/OS V1R4.0 JES2 Installation Exits

About this document

This document supports z/OS (5694–A01) and z/OS.e (5655–G52).

This document provides system programming information concerning the use of
IBM-defined and installation-defined JES2 exit routines. It describes how to
establish JES2 exit routines to tailor JES2 without in-line source code modification.

Who should use tThis document
This document is intended for JES2 system programmers or for anyone responsible
for customizing JES2.

How this document is organized
The organization and content of this document is as follows:

v Chapter 1 describes the processing concepts of JES2 exits.

v Chapter 2 describes how to write an exit.

v Chapter 3 lists the IBM-defined exits, describes how to choose which exits to
implement, and what to consider when writing an exit routine.

v Appendix A describes JES2 exit usage limitations.

v Appendix B provides sample code for Exits 17 and 18.

v Appendix C describes job-related exit scenarios.

v Appendix D describes z/OS product accessibility.

Where to find more information
This document references the following documents for further details about specific
topics. Abbreviated forms of these are used throughout this document. The
following table lists all abbreviated titles, full titles, and their order numbers that are
not listed in z/OS Information Roadmap. Refer to that document for all z/OS
documents.

Most licensed documents were declassified in OS/390 V2R4 and are now included
on the z/OS Online Library Collection, SKT2T-6700. The remaining licensed
documents appear in unencrypted BookManager softcopy and PDF form on the
z/OS Licensed Product Library, LK2T-2499.

Short Title Used in This
document

Title Order Number

CICS/ESA Customization Guide CICS/ESA Customization Guide SC33-1165

A Structured Approach to
Describing and Searching
Problems

SC34-2129

© Copyright IBM Corp. 1988, 2002 xi

|

Additional information
Additional information about z/OS elements can be found in the following
documents.

Title Order
Number

Description

z/OS Introduction and
Release Guide

GA22-7502 Describes the contents and benefits of z/OS
as well as the planned packaging and
delivery of this new product.

z/OS and z/OS.e Planning for
Installation

GA22-7504 Contains information that lets users:
v Understand the content of z/OS
v Plan to get z/OS up and running
v Install the code
v Take the appropriate migration actions
v Test the z/OS system

z/OS Information Roadmap SA22-7500 Describes the information associated with
z/OS including z/OS documents and
documents for the participating elements.

z/OS Summary of Message
Changes

SA22-7505 Describes the changes to messages for
individual elements of z/OS.
Note: This document is provided in
softcopy only on the message bookshelf of
the z/OS collection kit.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

Accessing z/OS ™ licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

xii z/OS V1R4.0 JES2 Installation Exits

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

1. z/OS.e™ customers received a Memo to Licensees, (GI10-0684) that includes this key code.

About this document xiii

http://www.ibm.com/servers/resourcelink

xiv z/OS V1R4.0 JES2 Installation Exits

Summary of changes

Summary of changes
for SA22-7534-03
z/OS Version 1 Release 4

The document contains information previously presented in z/OS JES2 Installation
Exits, SA22-7534-02, which supports z/OS Version 1 Release 3.

New information

v An appendix with z/OS product accessibility information has been added.

v Information is added to indicate that this document supports z/OS.e.

Changed information

v Command translation exit, HASX05C, is no longer automatically installed and
enabled.

v Added section about avoiding expanding JES2 control blocks. See “Chapter 1 -
introduction” on page 1.

v Updated Chapter 2: Writing an Exit Routine, Determining the JES2 Release
Level. See “Determining the JES2 release level” on page 17.

v Updated Chapter 3: IBM Defined Exits, Exit Selection Table. See Table 3 on
page 49.

v Updated Exit 5: JES2 Command Preprocessor. See “Exit 5: JES2 command
preprocessor” on page 87.

v Updated Exit 9: Output Excession Options, Programming Consideration. See
“Programming considerations” on page 110.

v Updated Exit 22: Cancel/Status. See “Exit 22: cancel/status” on page 165.

v Updated Exit 44: JES2 Converter Exit (JES2 Main), Function and Coded
Example. See “Function” on page 251 and “Coded example” on page 254.

v Updated Appendix A: JES2 Exit Usage Limitations, Reader and Converter Exits
Usage Table. See Appendix A, “JES2 exit usage limitations” on page 277.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

Summary of changes
for SA22-7534-01
z/OS Version 1 Release 2

The document contains information previously presented in SA22-7534-00, which
supports z/OS Version 1 Release 1.

Changed information

v Exit 19- Correction of contents of register two on entry. See “Register contents
when exit 19 gets control” on page 157

© Copyright IBM Corp. 1988, 2002 xv

This document contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

xvi z/OS V1R4.0 JES2 Installation Exits

Chapte r 1 - introduction

JES2 is a general job entry subsystem of MVS and sometimes cannot satisfy all
installation-specific needs at a given installation. If you modify JES2 code to
accomplish your specific functions, you then are susceptible to the migration and
maintenance implications that result from installing new versions of JES2. JES2
exits allow you to modify JES2 processing without directly affecting JES2 code. In
this way, you keep your modifications independent of JES2 code, making migration
to new JES2 versions easier and making maintenance less troublesome.

Caution!
Defining exits and writing installation exit routines is intended to be
accomplished by experienced system programmers; the reader is assumed to
have knowledge of JES2.

If you want to customize JES2, IBM recommends that you use JES2
installation exits to accomplish this task.

IBM does not recommend or support alteration of JES2 source code. If
you assume the risk of modifying JES2, then also assure your modifications
do not impact JES2 serviceability using IPCS. Otherwise, LEVEL2 may not be
able to read JES2 dumps taken for problems unrelated to the modifications.

Avoid expanding JES2 control blocks. Use alternatives such as:

1. Use fields dedicated for installation use that appear in many major control
blocks. Place your data, or a pointer to your data, in these fields. However,
beware of setting storage address in checkpointed or SPOOL resident
control blocks.

2. Use $JCTX services rather than modifying $JCT.

3. Use table pairs and dynamic tables. For example, use dynamic
$BERTTABs with CBOFF=* instead of modifying $JQE.

This is a partial list. Evaluate your specific situation and take appropriate
action.

Caution!
JES2 can operate in two modes; Full function mode (z2) or compatibility mode
(R4). All discussion in this document assume JES2 is running in z2 mode. For
more discussion about the two modes and how to switch between the two
modes, see the $ACTIVATE command in z/OS JES2 Commands. If you are
implementing exits which must support systems running in R4 as well as z2
mode, then you must be aware that fields within control blocks such as the
JQE are mode sensitive. For example in R4 mode, use JQEJOBNO_R4 for
the job number in a real JQE; in z2 mode, use JQEJBNUM for the job
number. However if you are referencing the job number in a JQA (Artificial
JQE), always use JQEJBNUM For detailed information see the z2 overview
section in z/OS JES2 Migration.

© Copyright IBM Corp. 1988, 2002 1

|

|
|
|
|

|

|
|

|
|

Figure 1, and the text that follows it, illustrates many of those areas where you can
modify JES2 processing using the JES2 exit facility.

v Initialization Processing

You can modify the JES2 initialization process and incorporate your own
installation-defined initialization statements in the initialization process. Also, you
can change JES2 control blocks prior to the end of JES2 initialization.

v Job Input Processing

You can modify how JES2 scans and interprets a job’s JCL and JES2 control
statements. Also, you can establish a job’s affinity, execution node, and priority
assignments before the job actually runs.

v Subsystem Interface (SSI) Processing

You can control how JES2 performs SSI processing in the following areas: job
selection and termination, subsystem data set OPEN, RESTART, allocation,
CLOSE, unallocation, end-of-task, and end-of-memory.

v JES2-to-Operator Communications

You can tailor how JES2 communicates with the operator and implement
additional operator communications for various installation-specific conditions.
Also, you can preprocess operator commands and alter, if necessary, subsequent
processing.

v Spool Processing

You can alter how JES2 allocates spool space for jobs.

v Output Processing

You can selectively create your own unique print and punch separator pages for
your installation output on a job, copy, or data set basis.

v JES2-SMF Processing

Job Input
Processing

Subsystem
Interface

JES2-To-Operator
Communications

Spool
Processing

Output
Processing

JES2-SMF
Processing

RJE
Processing

JES2

Initialization
Processing

Figure 1. Areas of JES2 Modification

2 z/OS V1R4.0 JES2 Installation Exits

You can supply to SMF added information in SMF records.

v RJE Processing

You can implement additional security checks to control your RJE processing and
gather statistics about signons and signoffs.

What is a JES2 exit?
JES2 exits provide a clean, convenient, relatively stable interface between JES2
and your installation-written code. Installation-written exit routines are invoked from
standard JES2 processing at various strategic locations in JES2 source code.
These strategic locations in JES2 source code are called exit points. A JES2 exit is
established by one or more exit points.

An exit point is defined by the $EXIT macro and, as illustrated in Figure 2, is the
exact location in JES2 code where JES2 can pass control to your exit routine (that
is, your installation-written code). The JES2 exit, identified by the “exit-id code” of
nnn, is defined by one exit point at label JLBL in the JES2 code. It is at JLBL in
JES2 processing that JES2 passes control to your exit routine.

To use the exit facility you perform the following steps, as illustrated in Figure 2.

1. Package your code into one or more exit routines, identifying each exit routine
with an entry point name. (In Figure 2 there is a series of exit routines noted as
entry points X1...Xn.) Then include the exit routine in a load module. In this
case LMOD is the load module containing the exit routine.

2. In the JES2 initialization stream include the LOADmod(jxxxxxxx) initialization
statement, which causes your exit routine’s load module to be loaded into either
private (PVT), common (CSA), or to locate the module in link pack area (LPA)
storage. The linkage editor RMODE attribute determines whether the system
loads the module above or below 16 megabytes.

Also include the EXIT(nnn) initialization statement, which associates your exit
routines’ entry point with the exit point in the JES2 code. The EXIT(nnn)
initialization statement matches the exit point “nnn” at label JLBL for the $EXIT
macro in the JES2 code. The EXIT(nnn) initialization statement identifies the
label “X1” as the entry point of the exit routine for exit point “nnn”. The LOAD
initialization statement identifies LMOD as the load module to be loaded into
storage.

Chapter 1 - introduction 3

JES2 can have up to 256 exits, each identified by a number from 0 to 255. You
specify the number on the required “exit-id code” parameter on the $EXIT macro.

This exit-id code identifies the JES2 exit. When more than one exit point is defined
for a single exit, the $EXIT macros that defined the multiple exit points have unique
labels but are all specified with the same exit-id code – see Figure 3.

JES2 Initialization Statements

LOADMOD(LMOD)

EXIT(nnn) ROUTINE = (X1,...Xn)

JES2 Code

JLBL $EXIT nnn

LMOD - Load Module

(Exit Routine Code)

LMOD $MODULE

X1 $ENTRY

Xn $ENTRY

$MODEND

Figure 2. A JES2 Exit

4 z/OS V1R4.0 JES2 Installation Exits

JES2 code includes a number of IBM-defined exits. That is, various exit points – via
the $EXIT macro – have already been strategically placed in the JES2 code. The
intended purpose of each of these exits is summarized in Table 3 on page 49. For
these IBM-defined exits you need only write your own exit routines and incorporate
them via the EXIT(nnn) initialization statement and the LOADmod(jxxxxxxx). The
selection of the point in JES2 code where the exit point should be placed has
already been done for you. To ensure a proper implementation, you should
thoroughly understand the IBM-defined exit and its JES2 operating environment. A
comprehensive description of each exit is presented in “Chapter 3 - IBM-defined
exits” on page 49.

Also, the JES2 exit facility allows you to establish your own exits, should the
IBM-defined exits not suffice. Exits established by you are modifications to JES2
and are called installation-defined exits, and you define them by placing the $EXIT
macro yourself at appropriate points in the JES2 code (or in your own exit routine
code). Note, however, that implementing your own exit can be considerably more
difficult than writing an exit routine for an IBM-defined exit. You should realize that
in establishing your own exits, you run a greater risk of disruption when installing a
new version of JES2 code. The new JES2 code into which you have placed your
exits may have significantly changed since your $EXIT macros were inserted. For
more information, see “Establishing installation-defined exits” on page 45.

Every exit, both IBM-defined and installation-defined, has a status of enabled or
disabled which is set at initialization via the EXIT(nnn) initialization statement and
which can be dynamically altered by the $T EXIT(nnn) operator command. When
an exit is enabled, JES2 checks for the existence of an associated exit routine and
then passes control to the exit routine. If no associated exits are found, standard
JES2 processing continues. For certain exits, called job-related exits, (refer to
“Job-related exits” on page 40) the status can be altered on a job-by-job basis by
the action of an exit routine. When an exit is disabled for a particular job (by use of
the job mask), it is automatically bypassed by standard JES2 processing.

Environment
The following topics describe the environment in which the JES2 exits run.

General
JES2 operates in four environments: JES2 main task, JES2 subtask, user
environment, and functional subsystem (FSS) environment. Your exit routine
receives control as fully-authorized extensions of JES2, and as such receives

JES2 Code

CCC $EXIT 87 More than one
exit pt. per exit.

A single exit pt.
per exit.

YYY $EXIT 87
ZZZ $EXIT 88

AAA $EXIT 93

XXX $EXIT 87

Figure 3. EXIT Point Variations

Chapter 1 - introduction 5

control in one of these four environments depending on where the associated exit
point is placed. JES2 main task and subtask exit points exist in the HASJES20 load
module.

Program authority
Your exit routine has access to various control blocks and service routines to which
the standard JES2 code has access at the exit point, and it runs with the same
authorization as the JES2 code from which your exit routine was invoked. Exit
routines invoked from the JES2 address space run in supervisor state in either the
JES2 main task or JES2 subtask environment with a protect key of “1”. Exit routines
invoked from the user environment execute in key 0. Exit routines invoked from the
functional subsystem (FSS) address space run in the FSS environment and usually
run in protect key 1 (as set by the FSS). Also, exit routines invoked from the FSS
address space have access to all service routines supported by HASPFSSM.

Exit linkage
A JES2 exit effector provides linkage services between an exit point and exit
routines. It locates and passes control to your exit routines and returns control to
JES2. There are two exit effectors: one provides linkage to exit routines that run as
extensions to the JES2 main task and the other provides linkage to exit routines
that run as extensions to JES2 subtasks or as extensions to routines in the user
address space or the FSS.

Return codes
Your exit routines can affect JES2 processing by directly manipulating JES2 data
areas and by passing back return codes. You can have up to 256 individual exit
routines associated with a single exit on the EXIT(nnn) initialization statement.
These multiple exit routines are all called consecutively in the order of their
appearance on the EXIT(nnn) initialization statement. Consider the following
example:

EXIT(175) ROUTINE=(X1,X2,X3,X4,X5,...)

For Exit 175, the exit routine identified by label X1 is called before the exit routine
identified by X2, and so forth, until all of them (X1 through X5) are called or until
one of them generates a nonzero return code, which causes the exit effector to
return to the JES2 mainline after the exit point.

Installation
IBM recommends that any modifications to JES2 code or the installation of JES2
exits be performed utilizing the functions of SMP/E (System Modification Program
Extended). This requires the preparation of SMP/E control statements and
constructs suitable for SMP/E processing. Applying changes in an SMP/E-controlled
environment prevents down-leveling or the application of release incompatible
maintenance.

In the case of JES2 exits, if the application of PTF maintenance changes any
macros or other components used by the exits, then the affected modules will
automatically be reassembled by SMP/E.

For more information on SMP/E, see the OS/VS System Modification Program
(SMP) System Programmer’s Guide

Note: No exit routines are ever required as part of standard JES2 processing. The
JES2 exit facility is fully optional. If you have not implemented an exit—that
is, if you have not written an exit routine for it, or have not included the exit
routine in a load module, or have not associated the routine with the exit at

6 z/OS V1R4.0 JES2 Installation Exits

initialization time—the presence of the exit point or points that establish the
exit is transparent during standard JES2 processing.

Chapter 1 - introduction 7

8 z/OS V1R4.0 JES2 Installation Exits

Chapte r 2 - writing an exit routine

When you are planning to write a JES2 exit routine, you need to consider the
environment in which the exit routine runs and other general programming
considerations (such as, the programming language to use to code your exit
routine, linkage conventions that are required, return codes to set, and reentrant
code requirements to follow). “Chapter 3 - IBM-defined exits” on page 49 provides
the specific programming considerations you need for writing exit routines for the
IBM-defined exits. You should use “Chapter 3 - IBM-defined exits” on page 49 with
the information in this chapter when writing your exit routine. Should you decide to
implement your own installation-defined exit in JES2, you need to investigate all the
exit-specific programming considerations yourself. See “Establishing
installation-defined exits” on page 45 for more information.

Note: All exit modules must be in APF authorized libraries.

Language
You must write JES2 installation exit routines in basic assembled language. To
assemble JES2 or installation exit routines, use High-Level Assembler or any
compatible IBM assembler.

Operating environment
For security reasons, the caller of an installation-defined exit in the user’s address
space must be either in supervisor state or be an authorized program. JES2 will
terminate a calling routine with neither of these attributes with a privileged operation
exception.

JES2 environments
When writing an exit routine, you must consider the calling JES2
environment , because your exit routine runs as an extension of that calling
environment (JES2 main task, JES2 subtask, user address space, and functional
subsystem). The calling environment has broad implications to your exit routine; it
determines the JES2 system services available to your exit routine, the reentry
considerations you should consider, the linkage conventions that are necessary, and
several other essential factors (such as, control block access, synchronization,
recovery, and JES2 programmer macro usage). Specifically, the use of macros in
exit routines is limited. Before attempting to use a particular macro in an exit
routine, be certain to check the “Environment” section of each macro description in
Chapter 4 to determine the environments in which the macro can be used.

Every exit is explicitly defined to JES2 as belonging to one of the four execution
environments. The ENVIRON= operand of the $MODULE macro is specified as
either “JES2”, “SUBTASK,” “USER,” or “FSS”. This specification determines which
of two exit effectors (the JES2 subroutines that establish the linkage between JES2
and an exit routine) will be called when the exit is enabled. One exit effector
establishes linkage to an exit routine from the JES2 main task environment; the
other establishes linkage to an exit routine from either the JES2 subtask
environment, the user environment or the FSS. In all environments (JES2 main
task, functional subsystem, subtask, and user environment) JES2 linkage
conventions (that is, $SAVE and $RETURN) are used.

© Copyright IBM Corp. 1988, 2002 9

You cannot define an exit “across” environments. That is, when an exit is required
to serve the same purpose in two distinct environments, two separate exits must be
defined, each with its own identification number. For example, Exit 11, an
IBM-defined exit that can give you control to reset the spool partitioning mask,
belongs to the JES2 main task environment. Exit 12, which serves the same
functional purpose, belongs to the user environment. In implementing these exits,
you must write a separate exit routine for each defined exit and adapt the routine to
its calling environment.

To stress again, whether defining an exit or writing an exit routine, you must be
aware of the operating environment; it influences where your exit is to be defined or
what processing your exit routine can really perform. In the descriptions of the
following general programming considerations for writing an exit routine, specific
environmental influences are described.

JES2 has four execution environments - maintask, subtask, user, and functional
subsystem (FSS).

1. JES2 Main Task - The JES2 main task is the most common operating
environment for JES2 exits. The JES2 main task routines are included in the
JES2 load module HASJES20 which is loaded in the private area of the JES2
address space. JES2 main task routines run under the control of the JES2
dispatcher (in HASPNUC). The load module, HASPINIT, which performs JES2
initialization, runs under the main task but is not controlled by the JES2
dispatcher.

The execution of maintask routines, with the exception of asynchronous routines
such as I/O appendages, are controlled by the JES2 dispatcher and are
represented by a dispatching unit called processor control elements ($PCEs).
$PCEs, which are analogous to task control blocks (TCBs) in MVS, are the
dispatchable elements in JES2 maintask.

There are two important coding considerations in the JES2 maintask
environment.

v JES2 Reentrancy - An exit routine called from the JES2 main task must be
reentrant in the JES2 sense. Because JES2 processors ($PCEs) do not
relinquish control to another JES2 processor involuntarily, an exit routine,
invoked out of a main task processor may use a JES2 nonreentrant work
area. Therefore, the work area is serialized unless the exit routine issues a
$WAIT macro (or service called from an exit routine issues the $WAIT
macro). When the exit routine issues the $WAIT macro directly or through a
called routine, control returns to the JES2 dispatcher and the serialization on
the nonreentrant work area ceases. The nonreentrant work area may also be
passed between exit routines, or between an exit routine and JES2, before a
$WAIT macro call. Work areas to be used “across” a $WAIT must either be
within the processor’s work area established as part of the $PCE or else
must be directly owned by the processor. In the same JES2 reentrant sense,
an exit routine may search or manipulate a JES2 queue (for example, job
queue or job output table) providing it has ownership of the queue (through
the $QSUSE macro) and doesn’t issue a $WAIT macro until the search
routine is completed.

v MVS WAITs - The JES2 dispatcher controls all processing within the
maintask environment; therefore, no routine or exit may issue any macro or
call any service that could result in the execution of an MVS WAIT macro.
Issuing MVS WAITs in JES2 maintask is contrary to the design of JES2 and
will cause performance problems.

10 z/OS V1R4.0 JES2 Installation Exits

An exception to this rule is JES2 initialization and JES2 termination. During
initialization and termination, maintask processing is essentially single
threaded. That is, there is only one $PCE dispatched so that JES2
reentrancy is not a factor. This also removes the concern about MVS WAITs
causing a performance problem because during JES2 initialization and
termination JES2 is not providing system services for other subsystems,
started tasks, time sharing sessions and batch jobs. Therefore, there are no
restrictions about MVS WAITs and MVS macros that can result in MVS
WAITs in JES2 exits 0, 19, 24, and 26.

If it is necessary to invoke MVS services from JES2 maintask exits that may
cause MVS waits, these services should be invoked from a subtask
environment. The $SUBIT macro can be used to cause a routine to execute
in a subtask environment. The WAIT/POST synchronization of the subtask is
provided as part of this service.

2. JES2 Subtask - JES2 subtasks run in the private area of the JES2 address
space but run asynchronously with the JES2 main task. Subtasks run under the
control of the MVS dispatcher (not the JES2 dispatcher) and their asynchronous
operation allows them to perform the WAIT/POST type processing without
imposing the same WAIT/POST operations on the JES2 main task.
System-wide MVS services are available to programs in this environment.

Many JES2 maintask data areas are directly addressable, but users of these
resources must understand when and where serialization of these resources is
relevant. Most importantly, subtask should not directly reference the checkpoint
area (job queue, job output table, and so on), because in certain portions of the
checkpoint cycle this storage area is not addressable. If a subtask requires a
view of the checkpoint, use the JES2 checkpoint versioning facility and the
appropriate SSI calls.

3. User Environment - Some JES2 routines are loaded into common storage
(located either in extended or non-extended LPA, PLPA, or CSA) execute in the
user’s address space. This environment, which permits user programs to
interface with JES2, differs greatly from the JES2 maintask environment.
System-wide MVS services are available to programs in this environment, but
the environment is also more complex. It involves many integrity,
synchronization, locking and cross-address space communications
considerations. JES2 services in the user environment are limited.

4. FSS Environment - The functional subsystem (FSS) resides in the functional
subsystem address space. This environment is similar to the user environment
in that JES2 services are limited. You must consider task interaction within the
FSS. All data areas and control blocks are not accessible from the FSS. The
accessible control blocks are the job output element ($JOE) JOE information
block ($JIB), FSS control block (FSSCB), and FSA control block (FSACB).
System-wide MVS services are available to programs in this environment.

Chapter 2 - writing an exit routine 11

Synchronization
An exit routine must use synchronization services appropriate to its calling
environment.

An exit routine called from the JES2 main task must use the JES2 $WAIT macro to
wait for a JES2 event, resource, or post of a MVS ECB. An exit routine called from
a JES2 subtask or from the user environment must use the MVS WAIT macro to
wait for a system event. An exit routine called from a functional subsystem must
also use MVS WAIT; $WAIT and $POST are not valid in this environment.

A JES2 main task exit routine should not invoke operating system services which
may wait (WAIT), either voluntarily or involuntarily. Be aware of any product that
interfaces with JES2 and attempts to issue MVS services such as STIMER,
STIMERM, WAIT, or TTIMER under the JES2 main task, or which invoke MVS
services such as allocation, which may issue such macros. An MVS wait from a
JES2 main task exit routine would stop all of the JES2 main task processors,
including any devices—such as readers, printers, and remote terminals—under their
control.

User Exits

User Exits
HASCxxxx

HASCHAM

....

JES2 Main Task and Subtasks
HASJES20 address space

ECSA

EPUT

EPLPA

ENUC
NUC

SQA

PLPA

CSA

Private

PSA

(Functional Subsystem Address Space)
HASSPFSSM

1 2

4

2G

{ 1

Figure 4. JES2 and FSS Address Spaces

12 z/OS V1R4.0 JES2 Installation Exits

Reentrant code considerations
Reentrant code considerations are contingent on the calling environment.

An exit routine called from the JES2 main task must be reentrant in the JES2
sense. The JES2 dispatching unit, commonly called JES2 processors, running
under a processor control element (PCE) perform the processing for the JES2 main
task. The JES2 dispatcher controls what PCE is currently active (that is, what JES2
processor is currently running). Because a JES2 processor doesn’t relinquish
control to another JES2 processor involuntarily, an exit routine, invoked out of a
JES2 main task processor may use a nonreentrant work area; the work area is
serialized if the exit routine doesn’t issue a $WAIT macro or until the exit routine or
service called from an exit routine does issue the $WAIT macro. When the exit
routine issues the $WAIT macro directly or through a called routine, control returns
to the JES2 dispatcher and the serialization on the nonreentrant work area ceases.
The nonreentrant work area may also be passed between exit routines, or between
an exit routine and JES2, before a $WAIT macro call. Work areas to be used
“across” a $WAIT must either be within the processor work area established as part
of the processor control element (PCE) or else must be directly owned by the
processor. In the same JES2 reentrant sense, an exit routine may search or
manipulate a JES2 queue providing it has ownership of the queue and doesn’t
issue a $WAIT macro until this action is completed.

An exit routine called from a JES2 subtask, from the user environment, or from the
FSS environment must be reentrant in the MVS sense. The exit routine must be
capable of taking an MVS interrupt at any point in its processing. The exit routine
must be able to handle the simultaneity of execution with other subtasks and user
address space, or functional subsystem (FSS) routines and with the JES2 main
task.

The following actions may produce unpredictable results:

v Modifying control block fields designed for use by the JES2 main task only (for
example, $DOUBLE, $GENWORK, and so on.)

v Accessing checkpointed data from the subtask, user, or FSS environment.

Linkage conventions
When control is passed to an exit routine, certain general registers contain linkage
information. Register 15 always contains the entry point address of the exit routine,
and can be used to establish addressability for the exit routine’s code. Register 14
contains the address (in the exit effector) to which the exit routine must return
control. In the JES2 main task environment, register 13 always contains the
address of the processor control element (PCE) of the processor that invoked the
exit. In the JES2 subtask environment or the user environment, register 13 always
contains the address of an 18-word save area. In the JES2 main task and subtask
environments, register 11 always contains the address of the HCT; and in the
functional subsystem environment (HASPFSSM), register 11 always contains the
address of the HASP functional subsystem communications table (HFCT). In the
user environment, register 11 always contains the address of the HASP common
communication table (HCCT). Depending on the exit, registers 0 and 1 might be in
use as parameter registers. The use of registers 2 through 10 and 12, usually used
as pointer registers, is also exit-dependent.

The use of registers 0 through 15 is documented, for each IBM-defined exit, in the
category REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT

Chapter 2 - writing an exit routine 13

ROUTINE. Note that if you install an optional installation-defined exit, you are
responsible for modifying JES2 code, preceding your exit, to load any parameters in
registers 0 and 1 and any pointers in registers 2 through 10 and 12 that are
required by your exit routine.

For multiple exit routines, the exit effector passes registers 2 through 13 to each
succeeding exit routine just as they were originally loaded by JES2 when the exit
was first invoked. However, register 15 contains the entry point address of the
current exit routine and, again, can be used to establish addressability for the exit
routine’s code. Register 14 contains the address to which the exit routine must
return control. This allows you to pass the information to consecutive exit routines.
For more information, see “Multiple exit routines in a single module” on page 33.

When any exit routine receives control, it must save the caller’s registers . An
exit routine called from any environment can save the caller’s registers by issuing
the JES2 $SAVE macro.

When any exit routine relinquishes control, it must restore the caller’s
registers , except for registers 0, 1, and 15. An exit routine called from any
environment must restore the caller’s registers by issuing the JES2 $RETURN
macro.

Just before returning control to JES2, an exit routine must place a return code in
register 15 and must place any parameters that it intends to pass, either back to
JES2 or to the next consecutive exit routine, in registers 0 and 1. If the return code
is greater than zero, or if the current exit routine is the last or only exit routine
associated with its exit, this return code is passed back to JES2 at the point of
invocation, along with any parameters placed in registers 0 and 1. If, however, the
return code is zero and the current exit routine is not the last or only exit routine
associated with its exit, the exit effector passes control to the next consecutive exit
routine, along with any parameters placed in registers 0 and 1.

IBM recommends that when using BAKR/PR instructions for routine linkage, that
you do not use the JES2 dispatching service, $WAIT, or call any other routines that
may result in a $WAIT. JES2 uses a process of sub-dispatching units of work
(PCEs), under a single task.

BAKR is an instruction where a linkage-stack branch stat entry is formed. If a stack
entry is created while a unit of work (PCE) is in control and that unit of work is
suspended by use of the $WAIT macro, then the next unit of work to get control
could change the state of these stack. Unpredictable results will occur when the
PCE that was $WAITED gets control back and issues a PR instruction.

Special processing in the JES2 dispatcher detects when a PCE issues a $WAIT
while there is something on the linkage stack. An abend, with reason code $DP2,
will be issued to prevent this logic error from propagating more problems. Note that
you can use the $STORE macro before the $RETURN macro to modify the
returned values of registers 0 and 1.

14 z/OS V1R4.0 JES2 Installation Exits

Addressing mode of JES2 exits
All JES2 code (except those sections of code associated with restricted MVS
services) runs in 31-bit addressing mode. In this manner, JES2 is able to take
advantage of the increased virtual storage provided by the operating system 31-bit
addressing mode. (Refer to z/OS MVS Programming: Assembler Services Guide for
a more complete discussion of 31-bit addressing and required operating systems
considerations.)

Addressing mode requirements
All JES2 exit routines:

v are entered in 31-bit addressing mode

v return in 31-bit addressing mode

v must have all input address parameters to the exit in 31-bit fields. (Although
some addresses may be restricted to below a 16-megabyte address for example,
the $PRPUT, $PBLOCK, and $SEPPDIR service routines. These should use the
$GETBUF macro to obtain HASP-type buffers because of this restriction.)

v must be compatible with all referenced control blocks

The addressing mode may be changed within an exit by using the $AMODE macro.
It is the user’s responsibility to understand the addressing mode considerations of
each exit and control the mode accordingly. See the $AMODE macro description for
more information.

Residency mode requirements
All JES2 installation exits can have a residency mode (RMODE) of ANY. To set the
residency mode of an exit assembly module, use the RMODE= parameter on the
$MODULE macro. To set the residency mode of a load module, use the linkage
editor’s MODE statement.

Received parameters
Received parameters, passed by either JES2 or the preceding exit routine in
registers 0 and 1, provide a method of passing information to an exit routine and of
informing an exit routine of the current point of processing. For any IBM-defined exit
that passes parameters (to the first or only associated exit routine), the specific
parameters are documented in the REGISTER CONTENTS WHEN CONTROL IS
PASSED TO THE EXIT ROUTINE category of the exit’s description. IBM-defined
Exit 6, which allows you to receive control both during and after the conversion of a
job’s JCL to converter/interpreter (C/I) text, presents a typical example. After a
single JCL statement has been converted to an C/I text image, Exit 6 places a zero
in register 0. After all of the JCL for a particular job has been converted to C/I text,
Exit 6 places a 4 in register 0. Your exit routine can determine what action to take
by checking this code when it first receives control.

For some exits, the parameter registers also contain pointers to control blocks, to
certain control block fields, or to other parameter lists. For a discussion of an exit
routine’s use of control blocks, see the “Control Blocks” section below.

The received parameters are passed, as modified, from routine to routine. Note that
if you install an installation-defined exit, you must ensure that JES2 passes any
parameters required by your exit routine in registers 0 and 1; this may require some
modification of JES2 source code.

Chapter 2 - writing an exit routine 15

Return codes
A return code provides a convenient way for an exit routine to affect the course of
following JES2 processing.

The standard return codes are 0 and 4. If 0 is returned by an exit routine that is not
the last or the only exit routine associated with its exit, the exit effector calls the
next consecutive exit routine. However, a 0 returned by the last or only exit routine
associated with its exit directs JES2 to proceed with standard processing. A 4
returned by any exit routine directs JES2 to proceed unconditionally with standard
processing; any succeeding exit routines remain uncalled.

Note that a standard return code does not necessarily suggest that an exit routine
has opted to take no action. You can write an exit routine to manipulate certain
JES2 data areas and then, by generating a standard return code, direct JES2 to
continue with normal processing based on this altered data.

The definition of return codes that are greater than 4 is exit-dependent. The specific
implementation of return of return codes greater than 4 is documented for each exit
under the category, RETURN CODES in each exit’s description. A brief indication of
the standard processing that results from the return of 0 or 4 is also included for
each exit. Note that if you install an optional installation-defined exit, you are
responsible for modifying JES2 code, following your exit, to receive and act on any
return code greater than 4 generated by your exit routine.

A return code is always a multiple of 4. If your exit routine passes a return code
other than 0 or another multiple of 4 to JES2, results are unpredictable. Also, the
$EXIT exit-point definition macro has a MAXRC= operand that specifies the exit’s
maximum acceptable return code. If your exit routine generates a return code that
exceeds this specification and the exit was called from the JES2 main task, the exit
effector issues the $ERROR macro. If the exit was called from a JES2 subtask,
from the user environment, or from the FSS environment, the exit effector issues
the ABEND macro.

Control blocks
An exit routine has access to various control blocks available in the environment
from which it was called.

To simplify exit coding IBM-defined exit routines provide in registers 0-13 pointers to
control blocks currently in main storage. Register 1 can contain a pointer to a
parameter list, which contains the addresses of control blocks currently in main
storage. For a list of the specific pointers provided by an IBM-defined exit, see the
REGISTER CONTENTS WHEN CONTROL IS PASSED TO THE EXIT ROUTINE
category of the particular exit’s description. Note that if you install an
installation-defined exit, you have to ensure that any pointers required by your exit
routine have been placed in the call registers by JES2 before invocation of your
exit; this may require some modification of JES2 source code.

An exit routine can access information available in control blocks. For example,
IBM-defined Exit 5, which allows you to perform your own JES2 command
preprocessing, passes the address of the PCE to an associated exit routine. You
can write your own command validation algorithm by writing an exit routine that
checks various command-information fields in the PCE.

16 z/OS V1R4.0 JES2 Installation Exits

CAUTION:
Because an exit routine runs fully authorized, it is free to alter any field in any
control block to which it has access. By altering specific fields in specific
JES2 control blocks, an exit routine can pass information to JES2 and to
succeeding exit routines and can thereby affect the course of later JES2
processing. Note that JES2 has no protection against any change made to
any control block by an exit routine. If you modify a checkpointed control
block, you must ensure that it is written to the checkpoint data set either by
your exit routine or by JES2. For this reason, you should exercise extreme
caution in making control block alterations.

Avoid expanding JES2 control blocks. Use alternatives such as:

v Use fields dedicated for installation use that appear in many major control blocks.
Place your data, or a pointer to your data, in these fields. However, beware of
setting storage address in checkpointed or SPOOL resident control blocks.

v Use $JCTX services rather than modifying $JCT.

v Use table pairs and dynamic tables. For example, use dynamic $BERTTABs with
CBOFF=* instead of modifying $JQE.

This is a partial list. Evaluate your specific situation and take appropriate action.

Except where it would seriously degrade system performance, JES2 provides a
reasonable amount of space in its standard control blocks for use by your exit
routines. Some storage-resident control blocks, such as PCEs and DCTs, have
storage reserved for exit routine use. You can use this storage to establish your
own exit-related field or fields within a standard control block or, if you require more
storage, you can use four of the bytes as a pointer to a work area acquired by an
exit routine using the JES2 $GETMAIN, $GETBUF, and $GETWORK macros or the
MVS GETMAIN macro. Disk-resident control blocks provide considerably more
space for exit routine use. For performance reasons, no checkpoint-resident control
blocks reserve space for use by exit routines.

In addition to using reserved space in the standard JES2 control blocks, you can
define and use your own installation-specific control blocks by using the JES2 exit
facility. An exit routine can use the JES2 $GETMAIN, $GETBUF, and $GETWORK
macros or the MVS GETMAIN macro to acquire storage and build a control block at
the appropriate point in processing. For example, a job-related control block can be
built by an exit routine associated with IBM-defined Exit 2. You can then use
IBM-defined Exits 7 and 8 to write your exit. installation-defined control blocks to
spool and to read them from spool into main storage.

Note that if an exit routine references the symbolic name of a control block field, the
DSECT for that control block must be requested in the exit routine’s module at
assembly time (via the $MODULE macro). Each exit description includes a list of
DSECTs normally required at assembly.

An exit routine that needs to access checkpoint control blocks must use appropriate
access services. See “Checkpoint control blocks” on page 286 for more information.

Determining the JES2 release level
Other code, whether other IBM program product code, Solution Developer code, or
installation-written code might need to determine what level of JES2 is installed.
This can be important so that such code can determine what support is required
within that code or what support JES2 provides for a particular release. The
JES2-provided global assembler variables, &VERSION and &J2VRSN, provide this

Chapter 2 - writing an exit routine 17

indication. Table 1 on page 18 provides the variable string associated with currently
supported releases of JES2.

Table 1. JES2-Provided Global Assembler Variables (&VERSION and &J2VRSN) for
Currently Supported JES2 Releases

JES2 Version and Release &VERSION and &J2VRSN String

SP5.1.0 ’SP 5.1.0’

SP5.2.0 ’SP 5.2.0’

OS/390 R1 and higher ’SP 5.3.0’

Based on the &VERSION or &J2VRSN value, the value of the string increases for
each successive JES2 release. Note that for OS/390 R1 JES2 IBM uses a string
value of ‘SP 5.3.0’ to protect this collating sequence. Consider this value stable and
not to be changed or incremented in the future.

To accommodate future JES2 releases, use the following assembly-time variables
(also valid for JES2-supported releases if you have installed APAR OW17462):

Variable Description and Use

&J2LEVEL
v Value: Same as listed in Table 1 on page 18 except for:

Release Value
OS/390 R1 ‘OS 1.1.0’
OS/390 R3 ‘OS 1.3.0’
OS/390 R4 ‘OS 2.4.0’
OS/390 R5 ‘OS 2.5.0’
OS/390 R7 ‘OS 2.7.0’
OS/390 R8 ‘OS 2.8.0’
OS/390 R10 ‘OS 2.10’
z/OS V1R2 ‘z/OS 1.2’
z/OS V1R4 ‘z/OS 1.4’

v Description: 8-byte string defined as are &VERSION and
&J2VRSN

v HCT Field: $LEVEL is &J2LEVEL (OS/390 only)
v HCCT Field: CCTLEVEL is &J2LEVEL (OS/390 only)
v Note: The format of this field is an 8-byte EBCDIC string;

however, do not rely upon the string data for release-to-release
comparisons, use &J2PLVL for that purpose.

&J2PLVL
v Value: A numeric value that increases by at least a value of 1 for

each successive JES2 release.
v Description: A value that corresponds to a specific JES2 product

release level as follows:

JES2 Version/ Release &J2PLVL Value
SP5.1.0 24
SP5.2.0 25
OS/390 R1 26
OS/390 R3 27
OS/390 R4 28
OS/390 R5 29
OS/390 R7 30
OS/390 R8 31
OS/390 R10 32

18 z/OS V1R4.0 JES2 Installation Exits

||
||

z/OS 1.2 33
z/OS 1.4 34

v HCT Field: $PLVL is &J2PLVL (OS/390 only)
v HCCT Field: CCTPLVL is &J2PLVL (OS/390 only)
v Note: The value itself has no inherent meaning.

&J2SLVL
v Value: 0 when a new &J2PLVL is created
v Description: A service level within the product level updated for

significant JES2 updates
v HCT Field: $SLVL is &J2SLVL(OS/390 only)
v HCCT Field: CCTSLVL is &J2SLVL (OS/390 only)
v Note: This value will never decrease within a specific value of

&J2PLVL

Programming Notes:

v OS/390

Run-time field SSCTSUSE points to a 10-byte field structured as follows:

Byte 1-8 CCTLEVEL

Byte 9-10 CCTPLVL and CCTSLVL (concatenated)

v Pre-OS/390

Run-time field SSCTSUSE points to an 8-byte field structured as follows:

Byte 1-8 CCTPVRSM

Run-time field CCTPVRSM in the HCCT is an 8-byte field that provides the
&VERSION / &J2VRSN String as listed in Table 1 on page 18 or stabilized to ‘SP
5.3.0’ for OS/390.

Service routine usage
Many service routines available to the JES2 main task are also available on an exit
routine called from the JES2 main task. You can include an executable JES2 macro
instruction at any appropriate point in a JES2 main task exit routine. Not all service
routines are available to the functional subsystem environment; those that can be
called must be appropriate. Depending on the macro, it provides inline code
expansion at assembly time or else calls a JES2 service routine, as a subroutine, in
execution.

An exit routine called from a JES2 subtask or from the user environment can use
any JES2 service routine that can be called from its environment and any MVS
service routine (SVC) that can be called from its environment. You can include a
JES2- or MVS-executable macro instruction at any appropriate point in the subtask
or user routine. Again, depending on the macro, it provides inline code expansion at
assembly time or else calls a JES2 or MVS service routine, as a subroutine, in
execution.

Exit logic
Using an exit for other than its intended purpose can increase the risk of degraded
performance and system failure and may cause migration problems.

Within the scope of an exit’s intended purpose, you have a wide degree of flexibility
in devising exit algorithms. For example, you can base spool partitioning on a
simple factor, such as job class, or on a complex comparison of several job

Chapter 2 - writing an exit routine 19

||

attributes and current spool volume usage. However, you should remember that as
you increase an algorithm’s sophistication, you also increase overhead and the risk
of error. Exit-specific logic considerations are provided in the “Other Programming
Considerations” category for each exit description.

Logic considerations for installing installation-defined exits and for implementing
them are provided in “Establishing installation-defined exits” on page 45.

Note, for both IBM-defined and installation-defined exits, that the ability to associate
multiple exit routines with a single exit allows you to devise modular logic segments.
Each separate function to be performed after exit invocation can be isolated in its
own exit routine. This can be especially useful when you need to provide alternate
types of exit processing for different received parameters.

Exit-to-exit communication
Communication among exit routines must be accomplished through mutually
accessible control blocks.

Exit point-to-exit routine communication
Several JES2 installation exits, such as installation exits 27 through 35 contain a
condition byte that provide a means of passing information to your exit routine.
JES2 sets this byte to indicate the status of the environment at the time the exit is
called. Check the bit settings in this byte to determine what (if any) processing
should be done by your exit routine. Refer to the “Register Contents When The Exit
Routine Gets Control” section of each exit description for the meaning of the
condition byte.

Exit routine-to exit point communication
These same exits provide an interface for your exit routine to inform the caller of
your exit of the results of your exit’s processing. You turn on bits in the response
byte to pass this information to the caller. This gives the caller a cumulative
response from all exit routines invoked to help the caller determine how to proceed
when control is returned to it. Your exit should not turn bits in the response byte off,
as there are some occasions when some bits of the response byte are turned on
initially before control is given to your exit.

Exit-to-operator communication
Except for exit routines called from the HASPCOMM module of HASJES20 and exit
routines called from JES2 initialization and termination, exit routines called from the
JES2 main task environment can communicate with the operator via the $WTO
macro. Exit routines called from the HASPCOMM module can communicate with
the JES2 operator via the $CWTO macro. Exit routines called from a JES2 subtask
or during JES2 initialization and termination can communicate with the operator via
the $$WTO and $$WTOR macros or via the MVS WTO and WTOR macros. Exit
routines called from the user environment or functional subsystem environment can
communicate with the operator via the MVS WTO and WTOR macros. Note that, if
a message is to be associated with jobs processed by a functional subsystem, the
job id must be included with the message. notification. Exits 2, 3, and 4 allow you to
send an exit-generated message to the operator along with certain return codes by
setting a flag in the RXITFLAG byte. Exit 5 allows you to control the standard
$CRET macro “OK” message and to send your own exit-generated message text
via the $CRET macro. Exit 9 allows you to control the standard output overflow

20 z/OS V1R4.0 JES2 Installation Exits

message. Exit 10 allows you control over the text and routing of all $WTO
messages. For details, refer to the individual exit descriptions.

Required mapping macros
Depending on the environment in which an exit executes, you will need to provide
the appropriate set of mapping macros to map storage areas. Below, listed by
environment, are the standard mapping macros required in order that your exit
routine will assemble properly. The DSECTID for the mapping macro should be
specified on the $MODULE macro. You should also note that individual exits also
require other specific mapping macros. These are listed under the “DSECTIDs TO
BE SPECIFIED ON $MODULE” heading provided for each exit.

Note: The addition of $MODULE in each exit will cause JES2 to pull in required
mapping macros. However, all macros should be explicitly coded to prevent
the return of MNOTEs and the possibility of assembly errors. Be certain your
exit routines conform to JES2 coding conventions. This will allow easier
diagnosis if an error should occur.

JES2 main task environment exits
0-5
7
10-11
13-22
24
26-27
38
39
40
44
46-47
49

Assuming you minimally code the following for each exit
COPY $HASPGBL
$MODULE
$ENTRY
$SAVE
$RETURN
$MODEND
END

Required macros
$CADDR (required by $MODULE)
$HASPEQU (required by $MODULE)
$HCT (required by $MODULE)
$MIT (required by $MODULE)
$PADDR (required by $MODULE)
$PARMLST (required by $MODULE)
$PSV (required by $MODULE)
$PCE (required by $MODULE)
$USERCBS (required by $MODULE)

JES2 subtask environment exits
6
8

Chapter 2 - writing an exit routine 21

12

Assuming you minimally code the following for each exit
COPY $HASPGBL
$MODULE
$ENTRY
$SAVE
$RETURN
$MODEND
END

Required macros
$CADDR (required by $MODULE)
$HASPEQU (required by $MODULE)
$HCT (required by $MODULE)
$MIT (required by $MODULE)
$PADDR (required by $MODULE)
$PARMLST (required by $MODULE)
$PSV (required by $MODULE)
$USERCBS (required by $MODULE)

Functional subsystem address space environment exits
23
25

Assuming you minimally code the following for each exit
COPY $HASPGBL
$MODULE
$ENTRY
$SAVE
$RETURN
$MODEND
END

Required macros
$CADDR (required by $MODULE)
ETD (required to support $HFCT)
FSIP (required to support $HFCT)
$HASPEQU (required by $MODULE)
$HFCT (required by $MODULE)
$MIT (required by $MODULE)
$PADDR (required by $MODULE)
$PARMLST (required by $MODULE)
$PSV (required by $MODULE)

User environment exits
8-9
12
28-37
41-43
45
48

Assuming you minimally code the following for each exit
COPY $HASPGBL
$MODULE
$ENTRY

22 z/OS V1R4.0 JES2 Installation Exits

$SAVE
$RETURN
$MODEND
END

Required macros
$CADDR (required by $MODULE)
$HASPEQU (required by $MODULE)
$HCCT (required by $MODULE)
$MIT (required by $MODULE)
$PADDR (required by $MODULE)
$PSV (required by $MODULE)
$USERCBS (required by $MODULE)

The following programming considerations describe some specific requirements for
coding your exit routine:

v Naming and Identifying an Exit Routine

You must begin each exit routine with the JES2 $ENTRY macro, which you use
to name the routine and to identify it to JES2.

For more information, see “Packaging Exit Routines” later in this chapter.

Note that you have flexibility in naming your exit routines, under standard labeling
conventions except for Exit 0 (see the description of Exit 0 in “Chapter 3 -
IBM-defined exits” on page 49 for more detail).

v Exit Addressability

The $ENTRY macro is also used to generate a USING statement for your exit
routine. The BASE= operand is used to specify the register or registers which
provide addressability when the exit routine gets control. However, the $ENTRY
macro does not load the base register.

v Source Module Conventions

The construction of a source module must follow certain conventions depending
on how you intend to package the exit routine. Through these conventions, JES2
is able to locate both exit routines and exit points within a module.

v Security

When deciding on whether to implement a specific exit routine, you should
consider whether installing a security product with your other system software
could satisfy your requirements. You should also consider the affect an exit
routine could have in terms of your installation’s security policy. Your security
auditing may be inaccurate if you change security information in a control block
in an exit that occurs after access to a resource has already been granted
without additional validation. Similarly, changes made to security information by
an exit that occurs before validation, could cause the validation to fail.

v DBSC Assembly Option

DBCS (Double-byte Character Set) is an option that may be invoked when doing
assemblies. DBCS is a means of providing support for languages which contain
too many symbols to be represented by a single byte character set such as
EBCDIC. JES2 supports the High-Level Assembler DBCS option for JES2 exit
routines. All JES2 macros integral in a customer’s JES2 exit will abide by DBCS
option rules, including the continuation line logic. JES2 macros will not have the
same characters specified in both columns 71 and 72. This would be interpreted
as a special DBCS continuation character. IBM does not support the DBCS
option for reassembly of its modules.

Chapter 2 - writing an exit routine 23

24 z/OS V1R4.0 JES2 Installation Exits

Controlling the loading of installation-defined load modules

Use the LOADmod(jxxxxxxx) initialization statement to direct the loading of all
installation-defined load modules (such as user-defined exits). Exit routines must be
loaded in this manner, rather than linking to JES2 load modules. JES2 only
searches for installation-defined exit routines in user modules defined by the
LOADmod(jxxxxxxx) statement, in the reserved module names HASPXJ00 –
J31, or in HASPXIT0; JES2 does not search for such routines in IBM-defined
modules. The STORAGE= parameter specifies the area of storage where the load
module is to be loaded. This is the copy that JES2 will use. Table 2 presents a
summary of the manner in which JES2 directs the load of a load module based on
initial placement of that load module and the LOADmod(jxxxxxxx) STORAGE=
specification.

Note the following restrictions:

v STORAGE=LPA is invalid if the load module is initially placed in STEPLIB only,
LINKLIST only, or both STEPLIB and LINKLIST. JES2 issues message
$HASP003 RC(31), MODULE COULD NOT BE LOADED.

v All other STORAGE= requests are valid, but you may not receive the expected
result (refer to Table 2).

v You cannot load a module into the link pack area (LPA) following MVS
initialization. You may only request that the copy of the module in LPA be used if
multiple copies are found.

Table 2. Directed Load and Use of Modules Based on LOADMOD(jxxxxxxx) STORAGE=
Specification

LOADMOD(x)

Location of Module
is:

STORAGE=PVT,
module is found in

STORAGE=CSA,
module is found in

STORAGE=LPA,
module is found in

STEPLIB Only PVT CSA $HASP003
RC=31

LPA Only LPA LPA LPA

LNKLST Only PVT CSA $HASP003
RC=31

STEPLIB and LPA PVT
(STEPLIB)

CSA
(STEPLIB)

LPA

STEPLIB and
LNKLST

PVT CSA
(STEPLIB)

$HASP003
RC=31

LPA and LNKLST LPA LPA LPA

STEPLIB, LPA and
LNKLST

PVT
(STEPLIB)

CSA
(STEPLIB)

LPA

To place the load module either above or below 16 megabytes, use the linkage
editor MODE statement or specify the RMODE= parameter on the $MODULE
macro.

Figure 5 illustrates two ways to package an exit routine:

© Copyright IBM Corp. 1988, 2002 25

A JES2 $MODULE macro must be the first code-generating statement (immediately
preceded by COPY $HASPGBL) in a source module to be assembled and either
link edited separately and loaded at initialization or a source module to be added to
a standard JES2 load module. Note that the $MODULE macro call must occur prior
to the first use of $ENTRY or $EXIT, and a JES2 $MODEND macro must be coded
at the end of both types of source modules.

You can only code one $MODULE and one $MODEND macro in each source
module. Further, when link editing exits into their own load modules (other than
HASJES20), each source module must be linked into its own load module.

To locate the MITs of modules that are added to the standard JES2 load modules,
JES2 uses weak external address constants. To locate the MITs of modules that are
linked in their own load modules, JES2 assumes that the MIT, generated by
$MODULE, is located at the front of the load module to which it points. The
MITETBL, generated by $MODULE, is located at the end of a module loaded at
initialization.

Also note, for all exit routine source modules, that if an exit routine references the
symbolic name of a control block field, the mapping macro for that control block
must be included in the $MODULE macro list in the same source module as the
exit routine at assembly time.

Furthermore, refer to Appendix C, “Hints for Coding JES2 Exit Routines” for a list of
required mapping macros for individual exits. These macros are environment
dependent and must be coded to prevent assembly errors and error messages.

The ENVIRON= operand of the $MODULE macro should be used to specify which
JES2 operating environment the exit routine(s) is to execute. Each exit description
in the “IBM-Defined Exits” reference section in “Chapter 3 - IBM-defined exits” on
page 49 includes a list of mapping macros normally required at assembly.

OBJLIB

JES2

EXIT
ROUTINE

EXIT
ROUTINE

EXIT
ROUTINE

EXIT
ROUTINE

JES2

LINKLIB

LINKEDI

LINKEDI
HASPXITO HASPXITO

Figure 5. Methods of Packaging an Exit Routine

26 z/OS V1R4.0 JES2 Installation Exits

Tracing
Minimal tracing of exit invocation can be performed automatically as part of the exit
facility. For this tracing to occur, three conditions are necessary:

1. The trace ID for exit tracing (ID 13) must be enabled.

2. The EXIT(nnn) initialization statement or the $T EXIT(nnn) operator command
must have enabled tracing. For more information, see “Tracing status” on page
43.

3. Tracing must be active (TRACEDEF ACTIVE=YES).

This automatic tracing produces a limited trace entry containing such general
information as exit point identification and register contents at the time of exit
invocation.

Also, to further trace execution of exit routine code, issue the standard JES2
$TRACE macro call within an exit routine. This results in a full trace record of exit
routine processing.

It is recommended that you use tracing to its fullest extent only in your testing cycle,
and that you limit its use in those areas of the standard processing
environment—for example, in conversion processing—where it is most likely to
degrade system performance.

Recovery
An exit routine should not depend on JES2 for recovery. JES2 cannot anticipate the
exact purpose of an exit routine and, therefore, any standard JES2 recovery that
happens to be in effect when your exit routine is called is, at best, minimal for your
particular needs. In other areas of processing, no JES2 recovery environment is in
effect, and an exit routine error has the potential to cause JES2 to fail.
Consequently, you should provide your own recovery mechanisms within your exit
routines.

For all exits routines for which you provide an $ESTAE routine, also be certain to
add the error recovery area DSECT, $ERA, to the $MODULE macro. On entry into
the recovery routine set up by $ESTAE, register 1 points to the ERA.

You can use the standard JES2 $ESTAE recovery mechanisms in implementing
your own recovery within the JES2 main task. You can use the MVS ESTAE
recovery mechanism in implementing your own recovery in the SUBTASK, USER,
or FSS environments. When recovering in the SUBTASK environment, JES2 frees
the save areas associated with the abending subtask. Your recovery should not
depend on the presence of a particular save area.

At minimum, a recovery mechanism should place a 0 or 4 return code in register
15. Beyond this, recovery depends on the particular purpose of an exit routine.

Controlling the loading of installation-defined load modules 27

28 z/OS V1R4.0 JES2 Installation Exits

Enabling an exit

Figure 6 shows how an exit routine (HASPUEX) can be assembled and link-edited,
and how to use the load module name. The source is in SYS1.JESEXITS, and the
load module is linked into SYS1.SHASLINK with the name of HASPUEX. This
name must also appear on the LOADmod(jxxxxxxx) initialization statement.

The following JES2 initialization statements can be used to load and associate Exit
1 with the above routine. Note that the name on the LOADmod(jxxxxxxx)
statement must match the load module specified to the linkage editor, and the
name on the ROUTINE= parameter on the EXIT(nnn) statement must be the
same name as on the $ENTRY macro.

LOADMOD(HASPUEX) STORAGE=PVT
EXIT(1) ROUTINE=UEXIT1,STATUS=ENABLED,TRACE=NO

Figure 7 shows an example exit routine for a user defined exit (UEXIT1). The
source is in SYS9.TECH, and the load module is linked into SYS9.TECH.LINKLIB
with the name of UEXIT1. This name must also appear on the LOADmod(jxxxxxxx)
initialization statement.

//ASM EXEC PGM=IEV90,PARM=’OBJECT,NODECK,XREF(SHORT)’
//SYSLIB DD DSN=SYS1.VnRnMn.ahassrc,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.AMODGEN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(1200,300))
//SYSPRINT DD SYSOUT=A
//SYSIN DD DSN=SYS1.JESEXITS(HASPUEX),DISP=SHR
//SYSLIN DD DSN=&&OBJ,DISP=(,PASS),UNIT=SYSDA,
// SPACE=(CYL,(1,1))
//LINK EXEC PGM=HEWL,COND=(0,LT,ASM),
// PARM=’XREF,LET,REUS’
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=SYS1.SHASLINK,DISP=OLD
//SYSLIN DD DSN=&&OBJ,DISP=(OLD,DELETE)
// DD *
NAME HASPUEX(R)

/*

Figure 6. Example of Assembly and Link-Edit of a Installation-Written Routine

© Copyright IBM Corp. 1988, 2002 29

//STEP1 EXEC PROC=SMPE
//SYSLIB DD DISP=SHR,DSN=SYS1.MACLIB
// DD DISP=SHR,DSN=SYS1.MODGEN
// DD DISP=SHR,DSN=SYS1.V2R10M0.SHASMAC
//SOURCECD DD DISP=SHR,DSN=SYS9.TECH.SOURCE
//SYSPRINT DD SYSOUT=*
//SMPSTS DD DISP=SHR,DSN=SMPE.MVST110.SMPSTS
//TARGET DD DISP=SHR,DSN=SYS9.TECH.LINKLIB
//TECHTX DD DSN=SYS9.TECH.SOURCE,DISP=SHR
//SMPCSI DD DISP=SHR,DSN=SMPE.MVS.GLOBAL.CSI
//SMPPTFIN DD DATA,DLM=$$
++USERMOD(HASXT01) /* IDENTIFY USERMOD */.
++VER(Z038) FMID(HJE7703).
++JCLIN.
//NPL102RA JOB (0020900),’TECH SVCS’,CLASS=Z,MSGCLASS=Y,NOTIFY=NPL102
//ASM1 EXEC PGM=ASMA90,REGION=2M,
// PARM=’DECK,NOOBJECT,XREF(SHORT)’
//SYSIN DD DISP=OLD,DSN=SYS9.TECH.LINKLIB(UEXIT1)
//SYSLIN DD DISP=OLD,DSN=SYS9.TECH.OBJLIB(UEXIT1)

//*
//LINK1 EXEC PGM=IEWL,PARM=’XREF,LIST,NORENT’
//SYSLIN DD DISP=OLD,DSN=SYS9.TECH.OBJLIB(UEXIT1)
//SYSLMOD DD DISP=SHR,DSN=SYS9.TECH.LINKLIB
//SYSLIN DD *
INCLUDE TECH(UEXIT1)
ENTRY UEXIT1
NAME UEXIT1(R)

//*
++SRC(UEXIT1) SYSLIB(SMPSTS) DISTLIB(LINKLIB) TXLIB(TECHTX).
$$
//SMPCNTL DD *
SET BDY(MVST110).
RESTORE SELECT(HASXT01) COMPRESS(ALL).

RESETRC.
SET BDY(GLOBAL).
REJECT SELECT(HASXT01) BYPASS(APPLYCHECK) COMPRESS(ALL).
RESETRC.
RECEIVE SELECT(HASXT01) SYSMODS LIST.

SET BDY(MVST110).
APPLY SELECT(HASXT01) REDO ASSEM BYPASS(ID) .

//

Figure 7. Example of an Exit Routine Employing a User Defined Exit

30 z/OS V1R4.0 JES2 Installation Exits

Sample exit routines

For most exits, IBM provides sample exit routines in SYS1.SHASSAMP. The
documentation for each exit indicates whether a sample routine has been provided.

© Copyright IBM Corp. 1988, 2002 31

32 z/OS V1R4.0 JES2 Installation Exits

Multiple exit routines in a single module

When developing and testing installation exits, it is probably easier to keep each
exit routine in its own source and load module. In this manner, the routines can be
assembled, loaded, and tested independently. If there are many routines, you may
want to eventually combine them into a single source and load module for easier
maintenance procedures.

Figure 8 shows three exit routines in a single module with a general structure that
you may want to follow.

XITS TITLE ’SAMPLE JES2 INSTALLATION EXITS - PREAMBLE’
* *
* COMMENT BLOCK FOR MODULE GOES HERE *
* *

COPY $HASPGBL COPY HASP GLOBALS
HASPUEX $MODULE ENVIRON=JES2, REQ’D BY $BUFFER C

RPL, C
$BUFFER, C
$CAT, C
$DCT, C
$HASPEQU, REQUIRED FOR REG CONVENTIONS C
$HCT, REQ’D BY $SAVE,$RETURN,ETC. C
$JCT, C
$JOE, REQ’D TO GET SYSOUT CLASS C
$JQE, C
$MIT, REQ’D BY HCT C
$PCE, REQ’D BY HCT C
$PDDB, REQ’D BY $PPPWORK C
$PPPWORK, REQ’D TO FIND JOE C
$RDRWORK

* *
* ADDITIONAL MAPPING MACROS GO HERE *
* *

TITLE ’SAMPLE SEPARATOR PAGE EXIT - ROUTINE 1’

* *
* COMMENT BLOCK FOR EXIT 1 GOES HERE *
* *

XIT1RTN1 $ENTRY BASE=R12 EXIT ROUTINE ENTRY POINT

$SAVE
LR R12,R15 LOAD BASE REGISTER

* *
* INSTALLATION EXIT CODE FOR EXIT 1 ROUTINE 1 GOES HERE *
* *

LA R15,8 SET RETURN CODE
RETURN1 $RETURN RC=(R15) RETURN TO HASPPRPU

TITLE ’SAMPLE SEPARATOR PAGE EXIT - ROUTINE 2’
XIT1RTN2 $ENTRY BASE=R12 EXIT ROUTINE ENTRY POINT

$SAVE
LR R12,R15 LOAD BASE REGISTER

Figure 8. Example of Providing Multiple Exits within a Single Load Module (Part 1 of 2)

© Copyright IBM Corp. 1988, 2002 33

The following JES2 initialization statements can be used to load and associate exit
points 1 and 2 with the above routines.

LOADMOD(HASPUEX) STORAGE=PVT
EXIT(1) ROUTINE=(XIT1RTN1,XIT1RTN2),STATUS=ENABLED,TRACE=NO
EXIT(2) ROUTINE=XIT2RTN1,STATUS=ENABLED,TRACE=NO

TITLE ’SAMPLE SEPARATOR PAGE EXIT - ROUTINE 1’

* *
* INSTALLATION EXIT CODE FOR EXIT 1 ROUTINE 2 GOES HERE *
* *

LA R15,8 SET RETURN CODE
RETURN2 $RETURN RC=(R15) RETURN TO HASPPRPU

LTORG
TITLE ’JOB CARD SCAN EXIT’

* *
* COMMENT BLOCK FOR EXIT 2 ROUTINE 1 GOES HERE *
* *

XIT2RTN1 $ENTRY BASE=R12 EXIT ROUTINE ENTRY POINT

$SAVE
LR R12,R15 LOAD BASE REGISTER

* *
* INSTALLATION EXIT CODE FOR EXIT 2 ROUTINE 1 GOES HERE *
* *

LA R15,8 SET RETURN CODE
$RETURN RC=(R15) RETURN TO HASPRDR
LTORG
$MODEND
END

Figure 8. Example of Providing Multiple Exits within a Single Load Module (Part 2 of 2)

34 z/OS V1R4.0 JES2 Installation Exits

Testing your exit routine

To test your exit routine you need to integrate your exit routine in the system,
ensure that it gets control and executes, and verify that the functions it is intended
to perform are performed. Verifying that the exit routine performed its function is exit
routine-dependent and unique for each exit routine.

You should test and debug your exit routine by running it on a secondary JES2 first.
In this way, any errors that occur do not directly affect your main JES2 production
system. Once the errors in the exit routine are fixed and tested, you can then
integrate it into the production JES2 system. Note that the following restrictions
apply to JES2 functions when using a secondary JES2:

v Started tasks (STCs) can be directed to either a primary or secondary JES.
However, following an IPL, started tasks do not complete start processing until
the primary subsystem has been started and completed initialization.

v Time-sharing users (TSUs) may only interface with the primary JES2.

v The MVS I/O attention table can only be associated with the primary JES.
Therefore, secondary JESs cannot receive the “unsolicited interrupt” required to
support pause-mode for print and punch devices and “hot readers” (that is,
readers started via the physical start button without the $S RDRn JES2
command).

v The MVS log console (SYSLOG) can only be associated with the primary JES.

v Secondary subsystems are started individually rather than automatically during
IPL by a start command in the master scheduler JCL (MSTJCL) as is the primary
subsystem.

Packaging the exit
Exit routines need to be packaged into load modules before they can be loaded into
the system and tested.

Modules that contain exit routines which execute in the JES2 main task or subtask
environment can be linkedited into a load module; these exits should be loaded into
private storage. Modules that contain exits in the user or functional subsystem
environment can be linkedited together and must reside in either LPA or CSA; these
exits must be loaded into common storage. Do not linkedit multiple exit points
that must be loaded into different areas of storage into the same load module.

You can also link edit your exit routines with HASJES20. When you package your
exit routines in this manner, it is required that you use a collection of weak external
names for the module names. These names should be the same as the label used
on the $MODULE macro of your exit routine. For HASJES20 the “weak external
names” are as follows: HASPXJ00, HASPXJ01, ..., HASPXJ31.

You may choose to use one of these packaging techniques exclusively, or you may
choose to use both methods in combination, assembling and link editing some
routines into the standard JES2 load modules and assembling and link editing
others separately and then loading them at initialization. Creating separate load
modules for your exit routines is recommended. JES2 never makes unconditional
direct references to external addresses or entry points in installation-written code.
The association between exit routines and JES2 source code is resolved during
initialization.

© Copyright IBM Corp. 1988, 2002 35

Figure 9 illustrates a separately linkedited load module for an exit routine and the
MIT and MITETBL structure associated with it. JES2 initialization uses this load
module and the information in the MIT and MITETBL to initialize the exit routine in
the system. The next topic describes this initialization process.

Initializing the exit in the system
Initializing an exit and its exit routines involve the use of the following two JES2
initialization statements:

v LOADMOD(jxxxxxxx)

Use the LOADMOD(jxxxxxxx) initialization statement to load the modules
containing your exit routines. The subscript of the LOADMOD initialization
statement specifies the name of the module to be loaded as defined on the
NAME control statement for the linkage editor. The module must be named
according to MVS naming conventions. Exit routines to be called from the user or
FSS environment can be loaded into CSA or you can request the LPA version be
used by specifying the STORAGE=LPA | CSA parameter specification on the
LOADMOD(jxxxxxxx) initialization statement. LPA can not be modified without
an MVS IPL. Exit routines to be called from the JES2 main task and subtask
environments should be loaded in the private area of the JES2 address space.
To place the load module either above or below 16 megabytes, use the linkage
editor MODE statement or specify the RMODE= parameter on the $MODULE
macro.

v EXIT(nnn)

Use the EXIT(nnn) initialization statement to associate one or more exit routines
with an exit.

Replace nnn, the exit number, with the corresponding exit identification number
specified on the $EXIT macro or macros that define the exit point or points that
establish the exit. The ROUTINES= parameter can then specify 1 to 255 exit
routine names, as specified on the $ENTRY macro symbol field or macros that

NAME

BIT MAP

MITETBL

EXIT ROUTINE 1

EXIT ROUTINE 2

NAME V-CON
NAME V-CONMITEBL

MIT {

{
Figure 9. Exit Routines Load Module

36 z/OS V1R4.0 JES2 Installation Exits

identify the corresponding exit routines. For example, you can specify EXIT(123)
ROUTINES=(rtn1, rtn2, rtn3). The JES2 exit effector calls multiple exit routines in
the sequence of their specification on the EXIT(nnn) statement. If you specify
more than one EXIT(nnn) statement with the same identification number, JES2
honors the last statement it encounters during initialization.

Note: The LOADMOD(jxxxxxxx) and EXIT(nnn) initialization statements are not
positional and do not have to be specified in any required order.

Figure 10 illustrates the primary parts of JES2 and their location in storage when
initialization completes.
A User environment
B User environment
C JES2 main task and subtasks

During initialization, JES2 uses the EXIT(nnn) statements to build the exit

information table (XIT) and the exit routine table (XRT), both located in ECSA. The
XIT contains an entry for each exit and an index into the XRT. The XRT contains an
entry for each exit routine name and address. At this time, JES2 also resolves
addresses for XRT entries using the MITs of any modules that are already loaded.

User Exits

User Exits
HASCxxxx

HASCHAM

....

JES2 Main Task and Subtasks
HASJES20 address space

ECSA

EPUT

EPLPA

ENUC
NUC

SQA

PLPA

CSA

Private

PSA

(Functional Subsystem Address Space)
HASSPFSSM 4

2G

{ A

C

B

Figure 10. Exit Placement

Testing your exit routine 37

For each LOADMOD(jxxxxxxx) statement, JES2 encounters and processes, JES2
propagates the routine address in the dynamically loaded module’s MIT to the XRT
for routine names already present. Installation-defined exit points in the module are
propagated to the XIT. JES2 builds the load module table (LMT) that contains the
names of all load modules and their MIT addresses. At the end of initialization
statement processing, any routine names that remain outstanding in the XRT,
without resolved addresses, are brought to the operator’s attention. When this
process is complete, the exit effectors can use the XIT and the XRT to provide
linkage from JES2 to exit routines. Note that, because of the manner which
initialization statements are processed, there is no order dependency between
EXIT(nnn) statements and LOADMOD(jxxxxxxx) parameters.

Figure 11 illustrates the completed control block structure after two separate load
modules (the first containing three routines and the second containing two routines)
have been initialized in the system. Note also that one of the routines (XITCOMON)
is shared by both Exit 1 and Exit 2.

38 z/OS V1R4.0 JES2 Installation Exits

UXITTEST LOAD MODULE

XRT

HASPUEX LOAD MODULE

LMT

XIT

HCT

NAME

NAME (ON MODULE)

FLAGS

FLAGS

FLAGS

#RTNS

#RTNS

#RTNS

USE COUNT

USE COUNT

USE COUNT

HASPUEX

UXITTEST

LMT

MIT

XLT

XRT

XRT

XRT

MIT

BITMAP

BITMAP

MITETBL

MITETBL

XIT2RTN2

XIT2RTN2

XIT2RTN2

XIT2RTN2

XIT2RTN2

XIT2RTN1

XIT1RTN2

XIT1RTN1

XIT1RTN1

‘XITCOMON’

XIT2RTN2

XIT1RTN2

XIT2RTN1

XITCOMON

XITCOMON

XITCOMON

V(XIT2RTN2)

V(XIT2RTN1)

V(XIT1RTN2)

V(XIT1RTN1)

V(XITCOMON)

USE COUNT

USE COUNT

USE COUNT

USE COUNT

USE COUNT

USE COUNT

XIT1RTN1

EXIT 1

EXIT 2

LOADMOD(HASPUEX)
LOADMOD(UXITTEST)

INITIALIZATION STATEMENTS:

MIT

MITETBL

MITETBL

MIT

XITCOMON

XIT2RTN2

XIT1RTN2

XIT2RTN1

XITCOMON

}}

}
}

}

}

}
}

}

EXIT 1

EXIT 2

EXIT 3

EXIT(1) ROUTINE = (XIT1RTN1, XIT1RTN2, XITCOMON)
EXIT(2) ROUTINE = (XIT2RTN1, XIT2RTN2, XITCOMON)

Figure 11. Load Module Initialization

Testing your exit routine 39

Passing control to exit routines
Every exit has a status of enabled or disabled. If an exit is enabled, JES2 calls its
associated exit routine(s) whenever one of the exit’s exit points is encountered in
processing JES2 code. (Note: The TYPE=TEST form of the $EXIT macro is an
exception; a TEST-type exit point occurs before a TYPE=ENTER exit point to allow
JES2 to determine whether the exit is implemented and enabled. If the exit is not
both implemented and enabled, JES2 saves processing time by bypassing the call
to the exit effector when it encounters the ENTER-type exit point.) When an exit is
disabled, its exit points are transparent during JES2 processing and JES2 does not
call the exit’s associated exit routine(s).

An exit’s status is first set at initialization. You can specify either
STATUS=ENABLED or STATUS=DISABLED on the EXIT(nnn) initialization
statement. If you leave the status of the exit unspecified, STATUS=ENABLED is the
default.

An exit’s status can then be dynamically controlled by the operator, using the $T
EXIT(nnn) command. Again, the operator has the option of identifying any exit by
number, a range of exits, or all exits, and specifying either STATUS=ENABLED or
STATUS=DISABLED. The operator can display an exit’s status by identifying the
exit by number on the $D EXIT(nnn) command.

When you suspect that an exit routine associated with a particular exit is causing an
error, a simple way of isolating the problem is to disable the exit, via an operator
command ($T EXIT(nnn)), to determine if the error still occurs when the exit routine
is not allowed to execute. You can also enable tracing as a debugging aid.

An exit can also be dynamically controlled on a job-related basis, using the exit
facility.

Job-related exits
Certain exits are identified as job-related exits. For these exits, the JOBMASK
parameter is specified on the $EXIT macro or macros defining their exit point or
points. JOBMASK is specified with the address of the job exit mask, a 256-bit mask
in the job control table (JCT), of which each bit corresponds to an exit identification
number; bit 0 corresponds to Exit 0, bit 1 corresponds to Exit 1, bit 2 to Exit 2, and
so on. (This means, of course, that bit 2 corresponding to Exit 2 is really the third
bit in the mask, and so on.) Initially, when the JCT is created, all the bits in the job
exit mask are set to one.

For a job-related exit, the status of its corresponding bit in the job-exit mask
becomes an additional factor in determining its exit status. If an exit has been
enabled in the standard way, by either the EXIT(nnn) initialization statement or the
$T EXIT(nnn) command, and its corresponding bit in the job exit mask is set to one,
the exit has a status of enabled and the exit effector calls its associated exit
routine(s). If, however, the exit has been enabled in the standard way but its
corresponding bit in the job exit mask is set to zero, the exit has a status of
disabled and the exit effector does not call its associated exit routine(s) for that
particular job. If the exit has been disabled in the standard way, the status of its
corresponding bit in the job exit mask is not taken into account; the exit remains
disabled. Note that if JOBMASK is not specified on the $EXIT macro, or if the JCT
is not in storage, the job exit mask can have no effect on the status of an exit.

40 z/OS V1R4.0 JES2 Installation Exits

Bits in the job exit mask can be manipulated by an exit routine on a job-by-job
basis. The recommended IBM-defined exit for setting the job exit mask is Exit 2.
Exit 2 is, in most cases, the first exit to be taken for a job, and provides access to
most of the job’s attributes specified in its JCL and placed in its JCT. For more
information, see the description of Exit 2 in “The IBM-Defined Exits” reference
section in “Chapter 3 - IBM-defined exits” on page 49.

For each exit description in “The IBM-Defined Exits”, the JOB EXIT MASK category
lists the exit as either job-related or not job-related. Note that Exits 11 and 12
present special cases.

Appendix C, “Job-related exit scenarios” on page 283 provides scenarios for
job-related exits.

Testing your exit routine 41

42 z/OS V1R4.0 JES2 Installation Exits

Tracing status

You can also control the status of exit invocation tracing.

Initially, for the tracing to occur automatically, three conditions are necessary:

1. The trace ID for exit tracing (ID 13) must be enabled.

2. The TRACE= operand of the EXIT(nnn) initialization statement must be
specified as, or allowed to default to, TRACE=YES.

3. Tracing must be active (TRACEDEF ACTIVE=YES).

If one of these conditions is absent, tracing does not occur.

The status of exit tracing can then be dynamically controlled by the operator, using
the $T EXIT(nnn) command. The operator has the option of identifying any exit by
number, a range of exits, or all exits, and specifying either TRACE=YES or
TRACE=NO. The operator can display the status of exit tracing by identifying the
exit by number on the $D EXIT(nnn) command.

The status of exit tracing cannot be controlled on a job-related basis.

© Copyright IBM Corp. 1988, 2002 43

44 z/OS V1R4.0 JES2 Installation Exits

Establishing installation-defined exits

JES2 can contain up to 256 exits. IBM has defined some of these. If none of the
IBM-defined exits is suited to a particular modification you would like to make, you
can consider installing an optional installation-defined exit.

Usually, establishing your own exit is much more difficult than writing an exit routine
for an existing IBM-defined exit; it requires a thorough knowledge of the area of
processing in which you would like your exit to occur. You should attempt to place a
installation-defined exit in a stable area of processing; the risk of error increases
with the complexity of the JES2 code in which you place the exit. If possible, you
should use your exit in replacing a JES2 function that is already isolated. As an
example, IBM-defined Exit 3 allows you to provide an exit routine to completely
replace the standard HASPRSCN accounting field scan routine.

You must consider whether the exit will require a single exit point or more than one.
You can determine this based on the requirements of your intended modification
and on the structure of the IBM code in the area of processing that you intend to
modify. You must also consider whether the function you wish to modify is
contained within a single JES2 execution environment. If it occurs in a second
environment, you may have to install a second exit as well.

Once you have determined the exact point of processing at which an exit point
must occur, use the $EXIT macro to define it.

First, you should specify the positional ID parameter with the exit’s identification
number. It is recommended that you begin numbering installation-defined exits with
255 and work down. (If additional IBM-defined exits are added later, your exit
numbers will not conflict with the new IBM-defined exit numbers.)

You must define the exit’s environment to JES2 using the ENVIRON= operand on
the $MODULE macro. This is specified as either JES2, SUBTASK, USER, or FSS.

If the exit is to be job-related, specify the address of the job exit mask for the
JOBMASK= operand. Note that if the JCT is not in storage you will have to point to
a copy of the job exit mask.

Use the TYPE= operand to specify the mode of $EXIT macro operation. To avoid
special processing overhead, you can define a TYPE=TEST $EXIT macro at some
location shortly before a TYPE=ENTER $EXIT macro in JES2 code. A TEST-type
$EXIT macro tests the status of the exit and sets a condition code (not a return
code):
cc=0 No exit routines are to be called
cc=1 Call exit routines, without tracing
cc=2 Call exit routines, with tracing

When JES2 encounters the TYPE=ENTER $EXIT macro, it does not have to retest
the exit’s status; it simply checks the condition code and either bypasses the exit
point or calls the exit effector, with or without tracing. Note that a TYPE=TEST
$EXIT macro and a TYPE=ENTER $EXIT macro must always be used together. If
you omit the TYPE= parameter, the resulting exit point causes JES2 to both
determine the status of the exit and then, depending on the status, either to bypass
the exit point or to call the exit effector.

© Copyright IBM Corp. 1988, 2002 45

Use the AUTOTR= operand to specify that automatic exit effector tracing should
(AUTOTR=YES) or should not (AUTOTR=NO) occur.

For more information on exit effector tracing, see “Tracing” in “Writing an Exit
Routine” and “Tracing Status” in “Controlling Exit Status” earlier in this chapter.

Along with inserting the $EXIT macro in JES2 source code, you may have to modify
the code before the exit point to pass parameters and pointers to the exit routines,
and you may have to modify the code following the exit point to receive
exit-generated parameters and to receive any return code greater than 4. For more
information, see “Linkage Conventions,” “Received Parameters,” and “Return
Codes” in “Writing an Exit Routine” earlier in this chapter.

Note: When using the $EXIT macro, you may need to include additional control
block DSECT mappings in that module. If, for example, the module you are
modifying did not previously require the mapping provided by the $XIT
macros, but this macro is required to map the exit parameter list and exit
information table (XIT), you must add it ($XIT) to the $MODULE macro
coded at the beginning of the module.

46 z/OS V1R4.0 JES2 Installation Exits

Hints for coding JES2 exit routines

Following these hints can help you in the following ways:
v Improve your code’s readability and simplify debugging of your exit code.
v Ease migration to a new release or maintenance level.
v Reduce the number of errors in your exit code.

Assembler instructions
v All USING/DROP statements should be paired. No overriding USINGs should be

used except when PUSH/POP is used. This helps prevent errors caused by
incorrect base registers.

v All TM (test-under-mask) instructions should use BO/BOR/BNO/BNOR/BM/BMR
branch instructions rather than BZ/BZR/BNZ/BNZR branch instructions. If this
technique is used, the logic of the branch instruction does not have to be
modified when adding or deleting flags in the instruction mask.

v Branches to *- or *+ should not be used except in macro code. This reduces the
possibility of causing errors when inserting new lines of code that change the
offset of the instruction to which the code is branching.

v Branch tables should be fully coded and documented. Branches to a non-labeled
line immediately after the branch table should not be used.

v To increase code readability, all branch instructions should use the extended
mnemonic instructions for both RX and RR machine instruction formats.

v All flag bits in flag-byte fields should be defined by equated symbols. Explicit
hexadecimal constants should not be used within instructions to represent flag-bit
settings. This allows easy reference to a given flag setting. The SI format
instructions TM, OI, NI, and XI should also use equated symbols. To provide
easy reference, these instructions should use equated symbols for their masks.

v When the implied length of the target field cannot be used, instructions
containing length fields should use equated symbols, not hard-coded lengths.
Therefore, only a reassembly is necessary if the length of the field is changed.

Constants
v Rather than using literals, the HCT/HCCT/HFCT DSECTs define many constants

which you should use whenever possible. The following are a few examples from
the HCT:
– $ZEROES – doubleword of binary zeroes
– $F1 – fullword binary one
– $H4 – halfword binary four
– $BLANKS – doubleword of EBCDIC blanks (X'40')

DSECTs
v For ease of migration, mapping DSECTs used as templates should not be

explicitly duplicated within source code. An example of this technique is the use
of JES2 $PDDB macro.

v Whenever possible, the use of locally-defined DSECTs, macros, or equated
symbols should be avoided. This technique helps to avoid future migration
problems.

v If you leave a control section (CSECT or RSECT) to define a DSECT, to return to
the control section, use the &J2SECTN and &J2SECTT; assembly variables.
– &J2SECTN contains the control section name.

© Copyright IBM Corp. 1988, 2002 47

– &J2SECTT contains the control section type, either CSECT or RSECT.

For example:
MYMOD $MODULE ENVIRON=USER,........
**
* *
* DEFINE DATA *
* *
**
MYDATA DSECT

DCs...
**
* *
* RETURN TO CONTROL SECTION *
* *
**
&J2SECTN &J2SECTT...

Registers
v Equated symbols for general purpose registers 0 to 15 (R0-R15) should be used.

v The general-purpose register equates used throughout JES2 are as follows:
R0 Parameter passing
R1 Parameter passing
R11 HCT addressability (JES2 main task)
R11 HCT addressability (JES2 subtasks)
R11 HFCT addressability (FSS)
R11 HCCT addressability
R12 Local addressability if $SAVE/$RETURN
R13 PCE addressability (JES2 main task)
R13 Save area address (FSS)
R13 Save area address
R14 Return address
R15 Entry address/return code

Miscellaneous
v Returned information used for routines and subroutines should use return codes,

not condition codes. All return codes should be passed in register 15.

v Except in critical performance areas, the use of dynamic work areas rather than
PCE work areas (for example, using $GETCMB to obtain a message building
work area) is recommended. Dynamic work areas should be used to prevent
unnecessary wasted storage caused by defining many unique PCE work area
fields.

v The inclusive OR instruction (OC) should not be used to test whether a field is
zero or non-zero. The OC can cause unnecessary page-outs, thus incurring
needless system overhead. Rather, the CLC (compare logical) instruction can be
used to compare the field with an appropriate constant (for example, $ZEROES).

v All code should be documented clearly and concisely. A good rule is to document
every line of code. In addition, block comments should be used to document
every module, routine, and subroutine. These comments should include detailed
information on the function of the routine, register values required on entry and
exit, register usage within the routine, and possible return codes.

48 z/OS V1R4.0 JES2 Installation Exits

Chapte r 3 - IBM-defined exits

This reference chapter provides the information you need to write exit routines for
the IBM-defined exits.

The exits are described in the order of their identification numbers, the ID numbers
assigned to them on their respective $EXIT macros. Each exit description begins
with a discussion of its recommended use, followed by a breakdown of
environmental considerations, linkage conventions, and other programming
considerations specific to the particular exit being described. (Note: For
convenience, except where single or multiple exit routines are mentioned
specifically, the following descriptions imply either one or more exit routines by the
inclusive term “exit routine.” For example, “your exit routine may replace the
standard routine” should be understood to mean “your exit routine or exit routines
may replace the standard routine.”) Table 4 summarizes for each exit the CSECT in
JES2 from which your exit routine can get control.

Exit selection table
When considering an alteration to a standard JES2 function, you should determine
whether one of the IBM-defined exits accommodates your intended change.

The exit selection table (Table 3) summarizes the available exits and their
functions. If you use an IBM-defined exit for other than its intended purpose, you
increase the risk of performance degradation and system failure.

Appendix C, “Job-related exit scenarios” on page 283 contains some scenarios
relating to job-related exits. The scenarios may be helpful to you in deciding what
exits to use in particular situations.

Table 3. Exit Selection Table

Exit Exit Title Purpose Some specific uses

0 PRE-INITIALIZATION Control the initialization process v Provide verification of JES2 initialization
options, specifically $HASP426 and
$HASP427 messages.

v Acquire user control blocks and user work
areas for use in initialization (such as the
user control table (UCT)).

v Provide addresses of user tables in the
master control table (MCT).

v Determine whether JES2 initialization is to
continue.

v Allow implementation of
installation-defined initialization options
and parameters.

© Copyright IBM Corp. 1988, 2002 49

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

1 JES2 PRINT/PUNCH
JOB SEPARATOR

Create you own print and punch
job separators and control
production of standard
separators.

v Selectively produce unique separators or
variations on the standard separators.

v Unconditionally produce standard
separators.

v Unconditionally suppress production of the
standard separators.

v Selectively produce separators for
particular users or particular job classes.

v Provide a different separator card on a
punch device.

v Place the company’s logo on header
page.

v Provide accounting information on the
trailer page.

2 JOB STATEMENT
SCAN

Scan the complete JOB
statement image and set
corresponding fields in the
appropriate JES2 control blocks.

v Alter JOB statement parameters including
a job’s class, priority, and other attributes.

v Supply additional JOB statement
parameters.

v Selectively cancel or purge jobs.
v Set the job exit mask in the JCT for

subsequent exits.
v Set the spool partitioning mask in the JCT.
v Initialize or modify other fields in the JCT,

including your own installation defined
fields.

v Modify other job-related control blocks.
v Build your own installation-defined

job-related control blocks.
v Enforce security and standards.

3 JOB STATEMENT
ACCOUNTING FIELD
SCAN

Scan the JOB statement
accounting field and set
corresponding fields in the
appropriate JES2 control blocks.

v Alter accounting field information.
v Supply additional accounting field

information.
v Perform your own accounting field scan.
v Process nonstandard accounting fields.
v Selectively cancel jobs.
v Set the job exit mask in the JCT for future

exits.
v Initialize or modify other fields in the JCT,

including your own installation-defined
fields.

v Pass information to subsequent exits
through the JCT user fields.

v Modify other job-related control blocks.
v enforce security and standards.

50 z/OS V1R4.0 JES2 Installation Exits

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

4 JCL AND JES2
CONTROL
STATEMENT SCAN

Scan JCL (not including JOB
statements).

v Alter JCL parameters and JES2 control
statements.

v Supply additional JCL parameters.
v Supply a JCL continuation statement.
v Alter JES2 control statements.
v Supply an additional JES2 control

statement.
v Perform your own JES2 control statement

processing.
v Suppress standard JES2 processing.
v Process your own installation defined

JES2 control statement subparameters.
v Selectively cancel or purge jobs.
v Enforce security and standards.

5 JES2 COMMAND
PREPROCESSOR

Process JES2 commands
received by the JES2 command
processor

v Alter received commands
v Alter particular fields, such as those

pertaining to command authority, in the
command processor work area for the
PCE to affect subsequent command
processing.

v Perform your own command validation
checking.

v Process your own installation-defined
commands, operands, and suboperands.

v Selectively terminate command
processing and notify the operator of
command cancellation.

6 CONVERTER/
INTERPRETER TEXT
SCAN

Scan converter/interpreter text
after conversion from individual
JCL images and after all of the
converter/interpreter text for a
particular job has been created.

v Scan the resolved JCL, including
PROCLIB expansion that will be used by
the job.

v Modify individual converter/interpreter text
images.

v Enforce security and standards.

7 CONTROL BLOCK
READ/WRITE (JES2)

Receive control whenever control
block I/O is performed by the
JES2 main task.

v Read or write your own
installation-defined job-related control
blocks to spool along with the reading and
writing of JES2 control blocks.

8 CONTROL BLOCK
READ/WRITE (USER)

Receive control whenever control
block (CB) I/O is performed by a
JES2 subtask or by a routine
running in the user address
space.

v Read or write installation-defined
job-related control blocks to spool along
with reading and writing of the JES2
control block.

9 JOB OUTPUT
OVERFLOW

Receive control whenever an
executing job is producing more
output than was estimated.

v Selectively allow JES2 to follow the
defined output overflow error procedure.

v Selectively direct JES2 to take special
action for the current job only to:
– Cancel the job
– Cancel the job with a dump
– Allow the job to continue
– Extend the job’s estimated output to a

specific new limit
– Control how often the output overflow

message is displayed
– Suppress the default error message

Chapter 3 - IBM-defined exits 51

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

10 $WTO SCREEN Receive control whenever JES2
is ready to queue a $WTO
message.

v Scan messages.
v Change the text of a message.
v Alter a message’s console routing.
v Selectively suppress messages.

11 SPOOL
PARTITIONING
ALLOCATION –
$TRACK

Receive control from the main
task when there are no more
track groups available on the
spool volumes from which the
current job is permitted to
allocate space.

v Expand the spool partitioning mask.
v Suppress spool partitioning by allowing

JES2 to use the allocation default.

12 SPOOL
PARTITIONING
ALLOCATION –
$STRAK

Receive control from the JES2
subtask or user address space
when there are no more track
groups available on the spool
volumes from which the current
job is permitted to allocate space.

v Expand the spool partitioning mask.
v Suppress spool partitioning by allowing

JES2 to use the allocation default.

13 TSO/E INTERACTIVE
DATA
TRANSMISSION
FACILITY
SCREENING AND
NOTIFICATION

Enhance the TSO/E interactive
data transmission facility by
screening incoming files at the
receiving network node and notify
the TSO/E receiver that a file has
arrived.

v Perform validity checking on the control
information for an incoming file and on the
basis of this check:
– Delete the transmitted file, not allowing

it to reach the intended receiver.
– Reroute the transmitted file to a TSO/E

user other than the intended receiver.
– Allow the transmitted file to remain

targeted for the sender’s intended
receiver.

v Direct JES2 to notify the receiver, via a
TSO/E SEND command, that a
transmitted file has arrived. In a
multi-access spool configuration specify
the system on which the TSO/E SEND
command will notify the receiver.

14 JOB QUEUE WORK
SELECT

Receive control to search the job
queue for work.

v Use tailored search algorithms to select
work from the job queue.

v Selectively bypass searching the job
queue for work.

15 OUTPUT DATA
SET/COPY

Receive control to handle the
creation of separator pages on a
data set or copy basis.

v Selectively generate separator pages for
each data set to be printed.

v Selectively generate separator pages for
each copy made of a data set.

v Selectively vary the number of copies
made of a data set.

v Selectively pick data sets and generate
separator pages for them.

v Change default print translation tables.

16 NOTIFY Receive control to examine or
modify messages that are sent.

v Alter routing of the notify message.
v Examine the notify message before it is

sent to the receiver and make selective
changes.

v Suppress sending the notify message to
the receiver.

v Replace the notify message before it is
sent to the receiver with an entirely new
one.

52 z/OS V1R4.0 JES2 Installation Exits

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

17 BSC RJE
SIGN-ON/SIGN-OFF

Receive control to manage and
monitor RJE operations for BSC.

v Selectively perform additional security
checks over and above the standard
password processing of the sign-on card
image.

v Selectively limit both the number and
types of remote devices that can be on
the system at any one time.

v Selectively bypass security checks.
v Implement installation-defined scanning of

sign-on card images.
v Collect statistics concerning RJE

operations on the BSC line and report the
results of the activity.

18 SNA RJE
LOGON/LOGOFF

Receive control to manage and
monitor RJE operations for SNA.

v Selectively perform additional security
checks over and above the standard
password processing of the logon image.

v Selectively limit both the number and
types of remote devices that can be on
the system at any one time.

v Selectively bypass security checks.
v Implement installation-defined scanning of

images.
v Collect statistics concerning RJE

operations on the line and report the
results of the activity.

19 INITIALIZATION
STATEMENT

Receive control for each
initialization statement.

v Insert installation initialization statements.
v Scan an initialization statement prior to

the JES2 scan and perform parameter
checking.

v Selectively alter values supplied on an
initialization statement to meet specific
installation needs.

v Optionally cause JES2 to bypass a
particular initialization statement.

v Optionally cause JES2 to terminate.

20 END OF JOB INPUT Alter the status of the job at the
end of job input

v Selectively assign a job’s system affinity,
execution node, and priority based on an
installation’s unique requirements and
processing workload.

v Based on an installation’s own defined
criteria, terminate a job’s normal
processing and selectively print or not
print its output.

v JCT is available for updating.
v Provide job tracking.

21 SMF RECORD Receive control when JES2 is
about to queue an SMF buffer.

v Selectively queue or not queue the SMF
record for processing by SMF.

v Obtain and create SMF control blocks
prior to queueing.

v Alter content and length of SMF control
blocks prior to queueing.

Chapter 3 - IBM-defined exits 53

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

22 CANCEL/STATUS Receive control to implement an
installation’s own algorithms
governing job selection and
ownership for TSO/E
CANCEL/STATUS.

v Allow an installation to implement its own
algorithms for job queue searching and for
TSO/E CANCEL/STATUS.

23 FSS JOB
SEPARATOR

Receive control to modify the job
separator page area (JSPA) that
is used by page-mode printers
such as the AFP printer to
generate the job separator page
for an output group.

v Control what information is passed to a
page-mode printer functional subsystem
application (FSA) via the JSPA.

v Suppress the printing of job separator
pages.

v Suppress the printing of the JESNEWS
data set.

24 POST
INITIALIZATION

Receive control to make
modifications to JES2 control
blocks prior to the end of JES2
initialization.

v Make final modifications to selected JES2
control blocks prior to the end of JES2
initialization.

v Initialize any special installation-defined
control blocks.

v Terminate JES2 during the initialization
process.

25 JCT READ (FSS) Receive control whenever JCT
read I/O is performed by a JES2
functional subsystem address
space (HASPFSSM).

v Read or write your own
installation-defined job-related control
blocks to spool along with the reading of
the JCT.

26 TERMINATION /
RESOURCE
RELEASE

Free resources obtained during
previous installation exit routine
processing during any JES2
termination.

v Free resources obtained by user-exit
routine processing that JES2 continues to
hold following a $P JES2 command, JES2
initialization termination, or JES2 abend.

27 PCE
ATTACH/DETACH

Allocate and deallocate
resources. Deny a PCE attach.

v Obtain resources whenever a PCE is
attached.

v Free resources prior to the detach of a
PCE.

v Deny the attach of a PCE.

28 SSI JOB
TERMINATION

Receive control prior to the
freeing of job-related control
blocks.

v Free resources obtained by Exit 32.
v Suppress job termination-related

messages.
v Replace JES2 job termination messages

with installation-defined messages.

29 SSI
END-OF-MEMORY

Free resources obtained on the
address space level.

v Free resources obtained by Exit 32.

30 SSI DATA SET
OPEN/RESTART

Receive control during SSI data
set OPEN and RESTART
processing.

v Examine data set characteristics for
validity checking, authorization, and
alteration.

31 SSI DATA SET
ALLOCATION

Receive control during SSI data
set allocation.

v Affect how JES2 processes data set
characteristics.

v Fail an allocation.

32 SSI JOB SELECTION Receive control during SSI job
selection processing.

v Perform job-related processing such as
allocation of resources and I/O for
installation-defined control blocks.

v Suppress job selection-related messages.
v Replace job selection-related messages

with installation-defined messages.

54 z/OS V1R4.0 JES2 Installation Exits

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

33 SSI DATA SET
CLOSE

Receive control during SSI data
set CLOSE processing.

v Examine data set characteristics for
validity checking, authorization, or
alteration.

v Free resources obtained at OPEN.

34 SSI DATA SET
UNALLOCATION

Receive control during SSI
unallocation processing.

v Free resources obtained by Exit 30
v Undo processing performed by Exit 30,

such as changing data set characteristics.

35 SSI END-OF-TASK Receive control during end of
task processing.

v Free task-related resources.

36 Pre-security
Authorization Call

Receive control prior to calling
SAF.

v Provide additional information to SAF
v Change information provided to SAF
v eliminate call to SAF
v Perform additional security authorization

checking above what SAF provides

37 Post-security
Authorization Call

Receive control after calling SAF. v Change the result of SAF verification
v Perform additional security authorization

checking above what SAF provides

38 TSO/E Receive Data
Set Disposition

Receive control during processing
of a TSO/E RECEIVE command

v Change the default processing (delete) if
a TSO/E user cannot receive a data set
with any security information in the user
profile.

39 NJE SYSOUT
Reception Data Set
Disposition

Receive control when your
system receives a data set from
another node that fails security
checks.

v Override the security decision and accept
the data set

v Change the security information and
accept the data set

v Delete the data set

40 Modifying SYSOUT
characteristics

Receives control before JOEs are
created for the job.

v Change the class of a SYSOUT data set
to affect grouping.

v Change the destination of a SYSOUT
data set.

41 Modifying Output
Grouping Key
Selection

Receives control during JES2
initialization after the default
output grouping keys have been
selected, but before any grouping
is done.

v Change which OUTPUT JCL keywords
JES2 uses for generic grouping.

42 Modifying a Notify
User Message

Receives control after input has
been validated and authorization
checking has been done for the
userid and node.

v Cancel the message
v Change the destination of the message
v Change the message text

43 Transaction Program
Select/Terminate
Change

Receives control during
transaction:
v select processing
v termination processing
v change processing

v Create installation-specific control blocks
for the TP

v Modify output limits associated with any
SYSOUT data sets created by the TP

v Issue messages to the TP’s message log

44 Exit for Converter
Main Task

Receives control after the
converter subtask has converted
the job’s JCL and before JES2
writes the job-related control
blocks to spool.

v Change fields in the $JQE and $JCT

v Detect and hold duplicate TSO logons

Chapter 3 - IBM-defined exits 55

||
|
|
|
|
|
|

|

|

Table 3. Exit Selection Table (continued)

Exit Exit Title Purpose Some specific uses

45 Pre-SJF Service
Request

Receives control from a request
for scheduler JCL facility (SJF)
services.

v Examine the request to determine if the
system should continue to process the
request for SJF services.

v Redirect error messages for a request.

46 Transmitting an NJE
Data Area

Receives control prior to JES2
transmitting an NJE job header,
NJE data set header, or a NJE
job trailer.

v Remove installation-defined sections that
were previously added to an NJE data
area

v Add or change information in an NJE data
area prior to transmitting it to another
node in the network.

47 Receiving an NJE
Data Area

Receives control prior to
receiving an NJE job header, NJE
data set header, or an NJE job
trailer.

v Add or remove installation-defined
sections that were previously added to an
NJE data area

v Add or change information in an NJE data
area prior to transmitting it to another
node in the network.

48 SSI SYSOUT data set
unallocation

Receive control after JES2 has
merged the characteristics from
the SSOB into the PDDB.

v Control whether JES2 spins the SYSOUT
data set.

49 Job Queue Work
Select - QGOT

Receives control whenever JES2
work selection has located a
pre-execution job for a device.

v Provide an algorithm to accept or not
accept a JES2-selected job.

v Control WLM initiator job selection.

Exit implementation table
The following table is a reference to the various CSECTs from which IBM-defined
exits can be taken and the JES2 environment in which the exit may be taken,
including an indication regarding whether or not the exit is subject to job exit mask
suppression. Use this table to help you implement your exit routines. Refer to the
$MODULE macro for descriptions of the environments.

Table 4. Exit Implementation Table

Exit Exit Title Containing CSECT Environment ($MODULE
ENVIRON=)

0 PRE-INITIALIZATION HASPIRMA JES2 (Initialization) Job Exit
Mask – N/A

1 PRINT/PUNCH SEPARATOR HASPPRPU JES2 Job Exit Mask

2 JOB STATEMENT SCAN HASPRDR JES2 Job Exit Mask

3 JOB STATEMENT
ACCOUNTING FIELD SCAN

HASPRDR JES2 Job Exit Mask

4 JCL AND JES2 CONTROL
STATEMENT SCAN

HASPRDR JES2 Job Exit Mask

5 JES2 COMMAND
PREPROCESSOR

HASPCOMM JES2 Job Exit Mask – N/A

6 CONVERTER/INTERPRETER
TEXT SCAN

HOSCNVT subtask of
HASPCNVS

SUBTASK Job Exit Mask

7 CONTROL BLOCK
READ/WRITE (JES2)

HASPNUC JES2 Job Exit Mask

56 z/OS V1R4.0 JES2 Installation Exits

Table 4. Exit Implementation Table (continued)

Exit Exit Title Containing CSECT Environment ($MODULE
ENVIRON=)

8 CONTROL BLOCK
READ/WRITE (USER)

HASCSRDS USER Job Exit Mask

9 JOB OUTPUT OVERFLOW HASCHAM USER Job Exit Mask

10 $WTO SCREEN HASPCON JES2 Job Exit Mask – N/A

11 SPOOL PARTITIONING
ALLOCATION – $TRACK

HASPTRAK JES2 Job Exit Mask

12 SPOOL PARTITIONING
ALLOCATION – $STRAK

HASCSRIC USER Job Exit Mask

13 TSO/E INTERACTIVE DATA
TRANSMISSION FACILITY
SCREENING AND
NOTIFICATION

HASPNET JES2 Job Exit Mask – N/A

14 JOB QUEUE WORK SELECT HASPJQS JES2 Job Exit Mask – N/A

15 OUTPUT DATA SET/COPY
SEPARATORS

HASPPRPU JES2 Job Exit Mask

16 NOTIFY HASPHOPE JES2 Job Exit Mask

17 BSC RJE SIGN-ON/SIGN-OFF HASPBSC JES2 Job Exit Mask – N/A

18 SNA RJE LOGON/LOGOFF HASPSNA JES2 Job Exit Mask – N/A

19 INITIALIZATION STATEMENT HASPIRPL JES2 (Initialization) Job Exit
Mask – N/A

20 END OF JOB INPUT HASPRDR JES2 Job Exit Mask

21 SMF RECORD HASPNUC JES2 Job Exit Mask – N/A

22 CANCEL/STATUS HASPSTAC JES2 Job Exit Mask – N/A

23 JOB SEPARATOR
PROCESSING (JSPA)

HASPFSSM FSS Job Exit Mask

24 POST INITIALIZATION HASPIRA JES2 (Initialization) Job Exit
Mask – N/A

25 JCT READ I/O (FSS) HASPFSSM FSS Job Exit Mask

26 TERMINATION/RESOURCE
RELEASE

HASPTERM JES2 (Termination) Job Exit
Mask – N/A

27 PCE ATTACH/DETACH HASPDYN JES2 Job Exit Mask – N/A

28 SSI JOB TERMINATION HASCJBST USER Job Exit Mask

29 SSI END-OF-MEMORY HASCJBTR USER Job Exit Mask – N/A

30 SSI DATA SET OPEN and
RESTART

HASCDSOC USER Job Exit Mask

31 SSI DATA SET ALLOCATION HASCDSAL USER Job Exit Mask

32 SSI JOB SELECTION HASCJBST USER Job Exit Mask

33 SSI DATA SET CLOSE HASCDSOC USER Job Exit Mask

34 SSI DATA SET UNALLOCATE HASCDSAL USER Job Exit Mask

35 SSI END-OF-TASK HASCJBTR USER Job Exit Mask – N/A

36 Pre-Security Authorization Call HASCSRIC USER Job Exit Mask

37 Post-Security Authorization Call HASCSRIC USER Job Exit Mask

Chapter 3 - IBM-defined exits 57

Table 4. Exit Implementation Table (continued)

Exit Exit Title Containing CSECT Environment ($MODULE
ENVIRON=)

38 TSO/E Receive Data Set
Disposition

HASPPSO JES2 Job Exit Mask – N/A

39 NJE SYSOUT Reception Data
Set Disposition

HASPNET JES2 Job Exit Mask – N/A

40 Modifying SYSOUT
Characteristics

HASPHOPE HASPXEQ JES2 Job Exit Mask – N/A

41 Modifying Output Grouping Key
Selection

HASCGGKY USER Job Exit Mask – N/A

42 Modifying a Notify User
Message

HASCIRSQ USER Job Exit Mask – N/A

43 Transaction Program
Select/Terminate/Change

HASCTP USER
Job Exit Mask

44 JES2 Converter Exit HASPCNVT JES2
Job Exit Mask

45 Pre-SJF Exit Request HASCSJFS USER
Job Exit Mask

46 Transmitting an NJE Data Area HASPNET JES2
Job Exit Mask

47 Receiving an NJE Data Area HASPNET JES2
Job Exit Mask

48 SSI SYSOUT Data Set
Unallocation

HASCDSAL USER
Job Exit Mask

49 Job Queue Work Select -
QGOT

HASPJQS JES2 Job Exit Mask – N/A

58 z/OS V1R4.0 JES2 Installation Exits

Exit 0: pre-initialization

Function
This exit allows you to control the start of the initialization process through various
means, such as:

v Processing JES2 initialization options, specifically the JES2 cataloged procedure
parameter field and/or the replies to the $HASP426 and $HASP427 WTORs. The
options can optionally be altered or bypassed.

v Acquiring installation-defined control blocks and installation work areas for later
initialization

v Providing user fields and addresses of installation-defined tables in the MCT. The
table pointers in the master control table (MCT) allow your installation to extend
JES2 processing of user tables to define JES2 initialization to extend or tailor
certain table-driven JES2 functions. Define user table pointers in the MCT as
MCTstmTU, where ‘stm’ is the JES2 initialization statement that you are
replacing. Refer to “Defining JES2 Tables” for a list of the MCT names.

v Determining whether JES2 initialization is to continue.

Environment

Task
JES2 main task (Initialization) – JES2 dispatcher disabled. You must specify
ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 0 in supervisor state and PSW key 1

Recovery
JES2 does not have a recovery environment established at the processing point for
Exit 0 (the JES2 ESTAE will process termination but not recover).

Job exit mask
Exit 0 is not subject to suppression.

Mapping macros normally required
$HASPEQU, $HCT, $MIT, $PCE, $CIRWORK

Point of processing
This exit is taken in the initialization routine that processes the initialization options
(IROPTS, in module HASPIRMA). The initialization options are taken from the
parameter field specified via the JES2 procedure or START command, or are
requested from the operator via the $HASP426 WTOR message if necessary. The
point of processing for this exit is just before parsing and analyzing the options and
setting appropriate flags. Exit 0 may be called a multiple number of times, because

© Copyright IBM Corp. 1988, 2002 59

new options may be requested repetitively via the $HASP427 WTOR message until
valid options are specified or the exit directs JES2 to bypass the options analysis.

The exit control blocks and the exit effector are not initialized at this point in
IROPTS when Exit 0 gets control. Therefore, the normal JES2 exit facility
initialization parameters cannot be used. IROPTS searches for module HASPXIT0
in the HASPINIT load module and then, if necessary, in the HASJES20 load
module. The name HASPXIT0 is defined as a weak external reference (WXTRN) in
both load modules. If HASPXIT0 is not found via this search, JES2 attempts to
locate a separate load module named HASPXIT0. However, if this load module is
only found in common storage (FLPA, MLPA, PLPA), Exit 0 will not be invoked.
JES2 will initialize without Exit 0. If HASPXITO is found in STEPLIB or LINKLIST, a
temporary XIT and XRT are built for the exit facility and the $EXIT macro. The
HASPXIT0 module’s MIT is searched for all entry point names of the form
'EXIT0nnn' and the entry point names found and the associated addresses are
placed in the temporary XRT in the order they are found.

If HASPXIT0 is found during JES2 initialization, an entry for that module is placed in
the exit facility LMT as if a LOADmod(jxxxxxxx) initialization statement had been
processed for it and the module is not deleted. Therefore other exit routines (e.g.,
for Exits 19 and 24) and installation-defined tables (e.g., initialization statement
$SCANTAB tables) can be assembled in the same module with the Exit 0 routines
without having them deleted by JES2 after initialization completes. Note, however,
that HASPXIT0 will be deleted from storage with HASPINIT if HASPXIT0 is
linkedited with the HASPINIT load module.

Programming considerations
1. Tracing for this exit is disabled because of its sequence in the initialization

process.

2. Because Exit 0 is called early in JES2 initialization, some main task services
may not be functional and most control blocks and interfaces are not yet
established. The JES2 dispatcher is not yet functional, so MVS protocol should
be used in Exit 0 routines (WAIT rather than $WAIT, ESTAE rather than
$ESTAE, etc.).

3. If Exit 0 returns a return code of 12, IROPTS issues message $HASP864
indicating that Exit 0 terminated initialization. IROPTS then returns to the
IRLOOP with return code 8, indicating that the $HASP428 message should be
issued before final termination.

4. The initialization options string passed to Exit 0 is first ‘folded’, that is all the
characters are ‘folded’ up to their capitalized versions.

5. The processing that JES2 does for the initialization options string after calling
Exit 0 is performed using the JES2 $SCAN facility and a table that defines the
options input allowed and how to process it. The table is actually composed of
two tables, an installation-defined table followed by a JES2-defined table.

By specifying installation-defined tables, an installation can implement its own
initialization options or replace the JES2 definition for existing options. Thus this
function can be accomplished without implementing Exit 0, or with an
implementation of Exit 0. Also, the $SCAN facility itself can be used from an
Exit 0 to process initialization options.

Exit 0

60 z/OS V1R4.0 JES2 Installation Exits

CAUTION:
This exit should be thoroughly tested in an environment that is totally
inaccessible to your production JES2 environment (the data set containing
the test version of the module that contains exit 0 should not be in the link
list).

This exit cannot be disabled other than by replacing or removing the load
module. A situation where JES2 cannot be initialized may occur if the exit is
improperly coded. This risk can be minimized by using Exit 24 to define user
tables for commands, rather than Exit 0. However, for installation defined
installation statements, Exit 0 must be used.

Also, if the MCT table entries are modified, the associated tables must not
reside in the HASPINIT load module. This is because the HASPINIT load
module is deleted after initialization, and the tables will become inaccessible.
Note that this restriction applies regardless of whether the tables define
initialization statements, commands, or messages.

Register contents when exit 0 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 A code indicating where the initialization options were specified
0 Options passed are from the EXEC card, the PARM

field
4 Options passed are from the $HASP426 message

WTOR reply
8 Options passed are from a $HASP427 message

WTOR reply

1 Address of a 2-word parameter list with the following structure:
Word 1 (+0) address of the initialization options string
Word 2 (+4) length of the initialization options string

2-10 Not applicable

11 Address of $HCT

12 Not applicable

13 Address of the initialization $PCE – the PCE work area for this
$PCE is the common initialization routine work area, mapped by the
$CIRWORK macro.

14 Return address

15 Entry address

Register contents when exit 0 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-13 Not applicable
14 Return Address
15 A return code

A return code of:

Exit 0

Exit 0: pre-initialization 61

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no additional exit
routines are associated with this exit, continue with normal IROPTS
processing.

4 Tells JES2 to ignore any additional exit routines associated with this
exit and to continue with normal IROPTS processing.

8 Tells JES2 to bypass processing of the options string and assume
the current values for the JES2 initialization options flags are
correct.

12 Tells JES2 to terminate processing. This results in the $HASP864
error message to the operator.

Coded example
Modules HASX00A and HASX00B in SYS1.SHASSAMP contain samples of exit 0.

Exit 0

62 z/OS V1R4.0 JES2 Installation Exits

Exit 1: print/punch separators

Function
This exit allows you to:

v Produce your own print/punch separators

v Control production of standard print/punch separators for batch jobs or
transaction programs (TP)

v Create separators that include the security label for the job output for JES2
managed printers, if your security policy requires it.

When using this exit to control the production of standard separators, you can:
v Unconditionally suppress production of standard separators
v Direct JES2 to unconditionally produce standard separators
v Allow JES2 to produce any standard separators that are in effect.

JES2 determines whether standard separators are in effect for any particular device
by using the initialization statement or the operator command separator options
provided by your installation at any given time; “Programming considerations” on
page 64 describes these options.

For punch devices, JES2 provides the option of producing start-of-job header cards
and trailer cards. For printers, JES2 provides the option of producing start-of-job
header pages, continuation-of-job header pages, and trailer pages. Start-of-job
header pages are produced at each output data set group (represented by a work
JOE) within a job. Continuation-of-job header pages are produced for the
continuation of a data set group if printing has been interrupted. Therefore, you are
able to control the production of separators on a job-by-job basis and, for
printers/punches on a data set group basis. See z/OS JES2 Initialization and Tuning
Guide for a sample separator page.

Each time your exit routine is called, you can direct JES2:

v To produce only your own separator (unconditionally suppressing production of
the standard separator)

v To produce only the standard separator, if it is in effect (without producing your
own separator)

v To produce the standard separator unconditionally

v To produce your own separator followed by the standard separator, if the
standard separator is in effect (for example, your own start-of-job header page
followed by the standard start-of-job header page)

v To produce your own separator and then to produce the standard separator
unconditionally

v To produce no separator (by not producing your own separator and by
suppressing production of the standard separator)

v To print or suppress the JESNEWS data set, regardless of whether or not a
separator is produced.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

© Copyright IBM Corp. 1988, 2002 63

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Restrictions
You cannot use this exit to modify the standard separator routines directly. If you
intend to produce a modified version of a standard separator, your exit routine must
replace the standard separator routine entirely, and is responsible for producing the
standard separator elements that you want to retain and your new or modified
separator elements.

Recovery
$ESTAE recovery is in effect. If a program check occurs in the exit, JES2 interrupts
the output currently processing on the device. The recovery routine does not create
a trailing separator and will not call Exit 1 to free allocated resources. JES2 places
the interrupted output groups in system hold with an indication that a failure
occurred during separator exit processing. As with every exit, you should supply
your own recovery within your exit routine.

Job exit mask
Exit 1 is subject to job exit mask suppression. The installation can implement exit 2
to set the 1st bit in the job exit suppression mask (JCTXMASK) or the installation
can indicate the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$BUFFER, $DCT, $DSCT, $HASPEQU, $HCT, $JCT, $JCTX $JOE, $JQE, $PCE,
$PDDB, $XPL

Point of processing
JES2 calls Exit 1 during print/punch processing before the check for standard
separator pages. The exit is called for job header and job trailer separators.

Programming considerations
1. This exit is available to provide a user-written separator page for local or RJE

printers only. There is no separator page for JES2 or user-supplied networking
output. If you require separator pages for networking output jobs, the
destination node must supply them (through use of this exit) when the output
prints.

2. For each device, initialization statements first determine whether standard
separators are in effect--that is, whether without an exit routine, JES2 would
normally produce or suppress standard separators.

For a local printer, the SEP=NO parameter of the PRT(nnnn) statement
instructs JES2 not to produce separator pages, and the SEP=YES parameter
instructs JES2 to produce separator pages. However, even if you specify
SEP=YES, if SEPPAGE=(LOCAL=NONE) appears on the PRINTDEF
statement, JES2 does not produce separator pages.

For a remote printer, the SEP=NO parameter of the R(nnnn).PR(m) statement
instructs JES2 not to produce separator pages, and the SEP=YES parameter
instructs JES2 to produce separator pages. However, even if you specify
SEP=YES, if SEPPAGE=(REMOTE=NONE) appears on the PRINTDEF
statement, JES2 does not produce separator pages.

Exit 1

64 z/OS V1R4.0 JES2 Installation Exits

For a local card punch, the SEP=NO parameter of the PUN(nn) statement
instructs JES2 not to produce separator cards, and the SEP=YES parameter
instructs JES2 to produce separator cards.

For a remote card punch, the SEP=NO parameter of the R(nnnn).PU(m)
statement instructs JES2 not to produce separator cards, and the SEP=YES
parameter instructs JES2 to produce separator cards.

After you start JES2, the operator uses the S option of the $T PRT(nnnn) or
$T PUN(nnn) command to change the status of any printer or card punch. For
any device, if the operator issues the $T command with S=Y, JES2 produces
standard separators; with S=N, JES2 does not produce standard separators.

3. Use the $PRPUT macro to produce any new separators your exit routine
creates. $PRPUT passes back a return code of 4 in register 15 if the creation
of the separator page is suspended or terminated.

4. Use the $PBLOCK macro to create block letters on any new separator page
your exit routine creates.

5. If you are using the spooling capabilities of a remote SNA device such as the
3790, use the $SEPPDIR macro to send a peripheral data information record
(PDIR) to the device.

6. Locating Extensions to the JCT Control Block : You can use the $JCTXGET
macro to locate extensions to the job control table ($JCT) control block from
Exit 1.

7. Using Buffers in this Exit Routine : JES2 provides this exit with a buffer to
use for I/O. JES2 page-fixes the buffer, when needed, so the buffer can be
used by the $PRPUT, $PBLOCK, and $SEPPDIR macros. The exit routine
accesses the buffer by coding a USING statement for label BFPDSECT. The
exit routine must not free the supplied buffer.

Although IBM recommends using the buffer that JES2 provides, the installation
has the option of obtaining its own buffer. Use the $GETBUF macro if your
routine obtains its own buffer and the $FREEBUF macro to free the buffer.
Code the following on the $GETBUF macro for any buffers you are using with
$PBLOCK, $PRPUT, and $SEPPDIR:
v TYPE=HASP
v FIX=YES for buffers used for local devices
v FIX=NO for buffers used for remote devices.

Although you could page-fix all buffers using the FIX parameter on $GETBUF,
this may lead to performance problems.

When using $PRPUT with WAIT=NO, I/O does not occur synchronously. The
device does not physically process the buffer until either you issue a $PRPUT
macro specifying WAIT=YES or the CCW area fills. Therefore, issue $PRPUT
with WAIT=YES before freeing the buffer.

8. If a hardware error or intervention situation interrupts $PRPUT processing, Exit
1 relinquishes control. When this occurs, JES2 can not deallocate any
resources your exit routine allocated. You can prevent this situation from
occurring by saving the addresses of allocated resources in a PCE field such
as PCEUSER0 and checking for the address(es) on entry to the exit routine.
Your routine can then reuse previously allocated resources and before
returning to JES2, the routine can release the resources and zero the pointer
field(s).

9. Some printers do not reposition to “top of forms” after the trailer page. To avoid
feeding blank pages through your printer, include a page eject statement in
your exit routine following the trailer separator page.

Exit 1

Exit 1: print/punch separators 65

10. Use SWBTUREQ REQUEST=RETRIEVE to retrieve any parameters a user
specifies on the OUTPUT JCL statement you need to build your separator
page. Refer to z/OS MVS Programming: Authorized Assembler Services Guide
for additional information on using the SWBTUREQ macro.

11. You can determine if Exit 1 is being invoked for transaction program by
examining field X001DSCT. If it contains an address, Exit 1 was invoked on
behalf of a TP. Zeroes in this field indicate Exit 1 was invoked on behalf of a
batch job.

12. For a TP, you will need to obtain the owner’s userid from the $JOE instead of
the $JQE. You can continue to obtain the owner’s userid from the $JQE for
batch jobs.

Register contents when exit 1 gets control
The contents of the registers on entry to this exit are:

0 Not applicable

1 Address of a parameter list with the following structure, mapped by
$XPL:

Field Name Description
XPLID The eyecatcher - $XPL
XPLLEVEL The version level of $XPL
XPLXITID The exit ID number - 1
XPLIND Indicator byte. This byte indicates whether the exit

was invoked for a job header, a job trailer, or a
continuation.
X001JHDR If this bit setting is on, then Exit 1

was invoked for a job header.
X001JTLR If this bit setting is on, then Exit 1

was invoked for a job trailer.
X001JCNT If this bit setting is on, then Exit 1

was invoked for a continuation.
X001RESP Response byte. This response byte will indicate

whether JES2 will produce standard separator
pages or not, and whether it will produce
JESNEWS or not. The response byte on entry can
have the following values:
X001DFSP If this bit setting is on, then the

production of the standard
separator page will be suppressed.
Otherwise, the standard separator
page will be produced.

X001JNWS If this bit setting is on, then the
production of JESNEWS will be
suppressed. Otherwise, JESNEWS
will be printed.

X001DCT Address of $DCT
X001JCT Address of $JCT
X001DSCT Contains the address of the $DSCT for TPs or

zeros for batch jobs.
X001JQE Address of $JQE
X001WJOE Address of the Work-JOE
X001CJOE Address of the Characteristics-JOE
X001PDDB Address of the first PDDB in the JOE. This field is

zero for job trailers.

Exit 1

66 z/OS V1R4.0 JES2 Installation Exits

X001SWBT Address of the scheduler work block text unit
(SWBTU) pointer list for the first PDDB in the JOE.
The SWBTU pointer list is mapped by SJTRSBTL
DSECT in the IEFSJTRP parameter list. This field is
zero if there is no OUTPUT JCL statement
associated with the first PDDB. JES2 uses the
SWBTU associated with the first PDDB to retrieve
the output identification and delivery information for
the entire output group. From this information, JES2
builds the detail box in the default standard
separator page.

X001NSWB Number of SWBTUs JES2 despooled. z/OS MVS
Programming: Assembler Services Reference
ABE-HSP contains additional information on
SWBTU and the IEFSJTRP parameter list.

X001HBUF Address of a HASP buffer for this exit’s use.
Mapping macro $BUFFER maps the buffer and
label BUFSTART points to the beginning of the
buffer work area. You must have a USING on field
BFPDSECT. Field $BUFSIZE in the $HCT contains
the size of the buffer work area. The exit routine
should not update any other fields in the buffer as
errors will occur when control returns to JES2.

2-10 Not applicable

11 Address of $HCT

12 Not applicable

13 Address of $PCE

14 Return address

15 Entry address

Register contents when control passes back to JES2:
0 Unchanged
1 Pointer to a parameter list mapped by $XPL:

Field Name Description
X001RESP This response byte can be set by the exit before

returning to JES2 if you want to change the value
on entry. Set the response byte as follows:
X001DFSP Turn this bit setting on to suppress

the standard separator page.
X001JNWS Turn this bit setting on to suppress

production of JESNEWS.
2-14 Unchanged
15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine.

4 Tells JES2 to ignore any additional exit routines associated with this
exit.

Exit 1

Exit 1: print/punch separators 67

Coded example
Modules HASX01A and HASX01B in SYS1.SHASSAMP contain a sample of Exit 1.

Exit 1

68 z/OS V1R4.0 JES2 Installation Exits

Exit 2: JOB JCL statement scan

Function
Exit 2 allows you to process information specified on the JOB JCL statement for
batch jobs. Exit 2 is invoked for the initial JOB statement and then for each
continuation of the JOB statement.

Using Exit 2 you can:

v Add, delete, change information specified on the JOB statement. If you are
adding information, such as accounting information, you can create an additional
JOB continuation statements.

v Indicate which spool volumes from which a job or transaction program should
allocate spool space, if the installation did not implement spool partitioning
through the JES2 initialization stream.

v Add job-level JCL statement to the job.

v Cancel, purge, or continue processing the job.

v Indicate whether additional job-related exits should be invoked for the job.

Recommendations for implementing exit 2
To add information to a JOB statement, you must create an additional job statement
image. JES2 input services receives and processes the additional job statement
image as the next statement to be read and processed. To add information to the
job JCL statement:

1. Move a comma into the last byte of the job statement image exit 2 is currently
processing. The comma indicates additional information follows on the job
statement.

2. Move the information you want to add to the job statement to the JCTXWRK
field and set the RDWXXSNC bit in the RDWFLAGX byte to one. Setting
RDWFLAGX to RDWXXSNC indicates that the installation has supplied an
additional job statement image.

3. Set register 15 to X’00’ or X’04’ depending on whether you want to invoke
additional installation exits to process the job.

You can also add an additional job level JCL statement to the job by:

1. Ensuring the job statement image exit 2 is currently processing is the last. Exit 2
is processing the last job statement image if a comma is not in the last byte of
the job statement image.

2. Place the job-level JCL statement in the JCTXWRK field and set the
RDWXXSNC bit in the RDWFLAGX byte to one. Setting RDWFLAGX to
RDWXXSNC indicates that the installation has supplied an additional job
statement image.

3. Set register 15 to X’00’ or X’04’ depending on whether you want to invoke
additional installation exits to process the job.

If you want to issue messages when you cancel or purge the job:

1. Generate the message text in exit 2

2. Move the message text to JCTXWRK and set the RDWXXSEM bit in
RDWFLAGX to one. Setting RDWFLAGX to RDWXXSEM indicates that the
installation exit has supplied an error message that will be added to the JCL
listing.

© Copyright IBM Corp. 1988, 2002 69

3. Set register 15 to X‘08’ to indicate JES2 should cancel or purge the job.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places exit 2 in supervisor state and PSW key 1.

Restrictions
v Refer to Appendix A, “JES2 exit usage limitations” on page 277 for a listing of

specific instances when this exit will be invoked or not invoked.

v Installation exit 2 is not invoked for jobs such as SYSLOG, $TRCLOG, or
JESMSG.

v Do not use this exit to set fields in the JCT; they will likely be overwritten by
future processing.

Recovery
$ESTAE is in effect and provides minimal recovery. Input Services will attempt to
recover from any program check errors experienced by exit 2. However, you should
not depend on JES2 for recovery.

Job exit mask
Exit 2 and all subsequent job-related installation exits can be suppressed after Exit
2 processes the initial job statement image. You can set the 2nd bit in the job exit
suppression mask (JCTXMASK) or you can indicate the exit is disabled in the JES2
initialization stream.

Storage recommendations
If exit 2 requires work areas or additional storage, you can:
v Use the 80-byte work area, JCTXWRK, in the JCT
v Issue $GETMAIN to obtain additional storage

Mapping macros normally required
$PCE, $RDRWORK, $JCT, $JCTX $HCT, $BUFFER, $MIT, $HASPEQU, RPL

Point of processing
Installation exit 2 can be invoked when JES2 encounters either:

v the JOB statement, this is called the initial job statement image

v or a continuation of the JOB statement, this is called an additional JOB
continuation statement image.

Module HASPRDR invokes installation exit 2 for initial JOB statement images. Input
service has obtained and initialized the job control table (JCT) and the IOT before

Exit 2

70 z/OS V1R4.0 JES2 Installation Exits

calling installation exit 2. After performing the processing you coded in exit 2, input
services completes scanning the JOB statement and allocates spool space for the
job.

Module HASPRDR invokes installation exit 2 for continuation JOB statement
images.

Extending the JCT control block
1. You can use the $JCTX macro extension service to add, expand, locate, and

delete extensions to the job control table ($JCT) control block from this exit. For
example, you can use these extensions to store job-related information.

2. If you need to change the scheduling environment, use the JCTSCHEN field in
the JCT.

Programming considerations
1. Be aware that when a JOB card image is passed to Exit 2, any //* comment

cards imbedded within that statement are also passed to the exit. For example,
all of the following are passed:

//ABC JOB
//* COMMENT CARD
// CLASS=A

If within a //* comment you imbed valid JOB card parameters, there is potential
to cause confusion in your scan routine and lead to unpredictable results.
Consider the following:

//* CHANGED CLASS FROM ORIGINAL CLASS=B

Register contents on entry to exit 2
Register Contents

0 A code indicating the type of JOB statement being scanned

0 indicates an initial JOB statement image

4 indicates a subsequent JOB continuation statement

1 Address of a 3-word parameter list with the following structure:
Word 1 (+0) points to the JOB statement image buffer
Word 2 (+4) points to the exit flag byte, RDWFLAGX, in the

$PCE
Word 3 (+8) points to the JCTXWRK field in the $JCT

2-9 Not applicable

10 Address of the $JCT or 0 if the JCT is unavailable (The JCT would
be unavailable, for example, if exit 2 is invoked to process a job
continuation statement after it has been decided to flush the job).

11 Address of the HCT

12 Not applicable

13 Address of the PCE

14 Return address

15 Entry address

Exit 2

Exit 2: JOB JCL statement scan 71

Register contents when exit 2 passes control back to JES2
Upon return from this exit, the register contents must be:
0-13 Not applicable
14 Return address
15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine. If there are no
additional exit routines associated with this exit, continue with
normal HASPRDR processing.

4 Tells JES2 to ignore any additional exit routines associated with this
exit and to continue with normal HASPRDR processing.

8 Tells JES2 to cancel the job; output (the incomplete JCL images
listing) is produced.

12 Tells JES2 to purge the job; no output is produced.

Note: If register 10 contains 0 (the JCT is unavailable), JES2 ignores any return
code greater than 4.

Coded example
Module HASX02A in SYS1.SHASSAMP contains a sample of exit 2.

Exit 2

72 z/OS V1R4.0 JES2 Installation Exits

Exit 3: JOB statement accounting field scan

Function
This exit allows you to provide an exit routine for scanning the JOB statement
accounting field and for setting the corresponding fields in the appropriate JES2
control blocks.

You can use your exit routine to interpret the variables in the accounting field and,
based on this interpretation, decide whether to cancel the job.

Use this exit to record alterations to the accounting field; they will not appear on the
user’s output but are reflected in the JCT and when the SMF type 6 record is
written.

This exit is associated with the existing HASPRSCN accounting field scan
subroutine. You can write your exit routine as a replacement for HASPRSCN or you
can use a return code to direct HASPRJCS to call HASPRSCN after your exit
routine has executed. In either case, when this exit is implemented and enabled,
JES2 treats your exit routine as the functional equivalent of HASPRSCN. The
specification of the ACCTFLD parameter on the JOBDEF initialization statement,
which normally determines whether JES2 is to call HASPRSCN, becomes an
additional factor in determining whether your exit routine is to be called. The exit is
taken only if the ACCTFLD= parameter on the JOBDEF initialization statement is
specified as either REQUIRED or OPTIONAL. The exit is not taken if
ACCTFLD=IGNORE is specified. When it is called, your exit routine—rather than
the ACCTFLD parameter—determines whether HASPRSCN is to be executed as an
additional scan of the accounting field. For a complete explanation of how the
ACCTFLD parameter is specified, refer to z/OS JES2 Initialization and Tuning
Reference. The relationship of HASPRSCN to this exit is described in greater detail
in the “Other Programming Considerations” below.

Related exits
Use Exit 2 to alter the accounting information and supply new accounting
information at the time the entire JOB statement is first scanned.

Environment

Task
JES2 main task. You must specify this task on the ENVIRON specification of the
$MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places Exit 3 in supervisor state and PSW key 1.

Restrictions
Refer to Appendix A, “JES2 exit usage limitations” on page 277 for a listing of
specific instances when this exit will be invoked or not invoked.

© Copyright IBM Corp. 1988, 2002 73

Recovery
$ESTAE recovery is in effect. The RDRRCV0 recovery routine will attempt to
recover from program check errors, including program check errors in the exit
routine. However, as with every exit, your exit routine for this exit should not depend
on JES2 for recovery. JES2 cannot anticipate the exact purpose of your exit routine
and can therefore provide no more than minimal recovery. You should provide your
own recovery within your exit routine.

Job exit mask
Exit 3 is subject to suppression. You can suppress Exit 3 by either implementing
exit 2 to set the 3rd bit in the job exit suppression mask (JCTXMASK) or by
indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$PCE, $RDRWORK, $JCT, $JCTX $HCT, $MIT, $BUFFER, $HASPEQU, RPL

Point of processing
This exit is taken from the JES2 main task, from the HASPRJCS JOB statement
scan subroutine of HASPRDR. The exit occurs after JES2 has scanned the entire
JOB statement, but before the execution of the HASPRSCN accounting field scan
subroutine, if HASPRSCN is to be called. The JCT has been initialized with the
JES2 and installation defaults; in addition, those fields of the JCT that correspond to
JOB statement parameters other than accounting field parameters have been set.
The JCTWORK field of the JCT contains the accounting field image.

Table 5 lists some of the fields in the JCT that you can modify.

Table 5. Selected JES2 Job Control Table Fields

Field Name in
JCT

Length
(Bytes)

Field Bit Meaning Notes

JCTSMFLG 1 SMF Flags 0–1 These bits are not part of the interface –

2 If set, IEFUSO exit not taken 1,2

3–4 These bits are not part of the interface –

5 If set, no type 6 SMF records produced 1,2

6 If set, IEFUJP exit not taken 1,2

7 If set, no type 26 SMF record produced 1,2

JCTJOBFL 1 Job Flags 0 Background job –

1 TSO/E (foreground) job –

2 Started task –

3 No job journaling 1,2

4 No output 1,2

5 TYPRUN=SCAN 1,2,3

6 TYPRUN=COPY 2,3

7 Job restartable 1,2,8

JCTJBOPT 1 Job Options 0 /*PRIORITY card was read and value is in
priority field (JCTIPRIO)

–

1 /*SETUP card was read –

2 TYPRUN=HOLD was specified 1,2,4

Exit 3

74 z/OS V1R4.0 JES2 Installation Exits

Table 5. Selected JES2 Job Control Table Fields (continued)

Field Name in
JCT

Length
(Bytes)

Field Bit Meaning Notes

3 No job log for this job 1,2,6,8

4 Execution batch job 1,2

5 The job was read through an internal
reader

–

6 The job was rerun –

7 This bit is not part of the interface –

JCTJOBID 8 JES2 JOB identifier –

JCTJNAME 8 Job name 3

JCTPNAME 20 Programmer name 3

JCTMCLAS 1 Message class 1,4

JCTJCLAS 1 Job class 1,4

JCTIPRIO 1 Priority 1,5

JCTROUTE 4 Route code of input
device (binary)

–

JCTINDEV 8 Input device name –

JCTACCTN 4 Account number 1,6

JCTROOMN 4 Room number 1,6,8

JCTETIME 4 Estimated real–time job
will run

1,6,8

JCTESTLN 4 Estimated count of
output lines (in
thousands)

1,6,8

JCTESTPU 4 Estimated number of
output cards punched

1,6,8

JCTESTBY 4 Estimated number of
SYSOUT bytes

8

JCTESTPG 4 Estimated number of
output pages

8

JCTFORMS 8 Job Forms 1,6,8

JCTCPYCT 1 Job copy count (binary) 1,6,8

JCTLINCT 1 Lines per page (binary) 1,6,8

JCTPROUT 4 Default print routing
(binary)

1,7

JCTPUOUT 4 Default punch routing
(binary)

1,7

JCTPROCN 8 Procedure DD name 1,2,8

Notes:

1. Can be modified by installation routine.

2. Preset from JOBCLASS(v) initialization statement according to job class

3. Preset from JOB statement

4. From JOB statement, if specified; otherwise according to input device as
established at JES2 initialization (for example, in RDR(nn)).

Exit 3

Exit 3: JOB statement accounting field scan 75

5. Exit 3 can use field JCTIPRIO to force a priority for a job subject to the
limitations of the input device’s priority increment and priority limit values. When
exit 3 receives control, a value of C’*’ in JCTIPRIO indicates a priority has not
been forced by an exit routine. If you wish to force a priority in exit 3, set
JCTIPRIO to a value between 0 and 15 in the low-order four bits on the field.

Note: Whether you may set field JCTIPRIO and the allowable values depend
on the specific exit.

6. Set by the routine (HASPRSCN) used by JES2 to scan the account field of the
JOB statement. Exit 3 can specify that JES2 cannot call HASPRSCN.

7. Preset according to an input device initialization parameter (for example
RDR(nn)). If not set at initialization the parameter defaults to the job input
source value (LOCAL or RMT(nnnn)). Can be modified by a /*ROUTE statement
after the scan exit.

8. Can be modified by a /*JOBPARM statement after the scan exit.

Extending the JCT control block
You can use the $JCTX macro extension service to add, expand, locate, and delete
extensions to the job control table ($JCT) control block from this exit. For example,
you can use these extensions to store job-related information.

Programming considerations
1. The accounting field resides in a 144-byte work area, JCTWORK, in the JCT.

The address of JCTWORK is in the first word of the 3-word parameter list
whose address is passed to the exit routine in R1.

2. If you need to verify the existence of a JOB rather than a started task (STC) or
TSO/E logon, this can be done by comparing the JCTJOBID field to a “J”. The
presence of a “J” indicates the existence of a JOB.

3. If you need to change the scheduling environment, use the JCTSCHEN field in
the JCT.

4. The ACCTFLD parameter on the JOBDEF statement indicates whether JES2
should scan the accounting field of a JOB statement. For further details
concerning the use of the ACCTFLD parameter, refer to z/OS JES2
Initialization and Tuning Reference.

If the ACCTFLD parameter indicates that the scan should be performed, and if
this exit is implemented and enabled, then HASPRJCS calls your exit routine
to perform the scan. If your exit routine passes a return code of 0 or 4 to
JES2, then HASPRJCS calls the existing HASPRSCN accounting field scan
subroutine after your routine has executed. Note that if both routines are to be
called, your routine should not duplicate HASPRSCN processing. For example,
your routine should not set the fields in the JCT that are set by HASPRSCN.
However, if your routine passes a return code of 8 or 12 to JES2, it causes
JES2 to suppress execution of HASPRSCN. If the ACCTFLD parameter
indicates that the scan should be performed but this exit is disabled, then only
HASPRSCN is called; your exit routine is not called and is not given the
opportunity to allow or suppress HASPRSCN execution. If the ACCTFLD
parameter indicates that a scan should not be performed, your exit routine is
not called, even if this exit is enabled, and execution of HASPRSCN is also
suppressed.

5. The ACCTFLD parameter on the JOBDEF statement indicates whether JES2
should cancel a job if the accounting field on the JOB statement is invalid or if
a JCL syntax error has been detected during HASPRJCS processing. Note

Exit 3

76 z/OS V1R4.0 JES2 Installation Exits

that your exit routine can affect this termination processing. For example,
ACCTFLD=REQUIRED indicates that JES2 should scan the accounting field,
that the job should be canceled if the accounting field is invalid, and that the
job should be canceled if a JCL syntax error has been found. If you pass a
return code of 8 to JES2, HASPRSCN is not called and therefore cannot
terminate a job with an invalid accounting field, even though
ACCTFLD=REQUIRED. Also note that HASPRSCN scans the JCTWORK field
of the JCT. Therefore, if your routine alters this field, you affect HASPRSCN
processing.

6. The specification of the ACCTFLD parameter is stored in the HCT, in field
$RJOBOPT. If your exit routine is meant to completely replace HASPRSCN,
you may want to access this field for use by your algorithm.

7. Usually, use this exit, rather than Exit 2, to alter the JCT directly. If you use
Exit 2 to alter the JCT, later processing might override your changes. The job
exit mask and the spool partitioning mask are exceptions. See note 2 of Exit 2
for more information.

8. An 80-byte work area in the JCT, at label JCTXWRK, is available for use by
your routine. If your routine requires additional work space, use the GETMAIN
macro to obtain storage (and the FREEMAIN macro to return it to the system
when your routine has completed).

9. When passing a return code of 12, your exit routine can pass an
installation-defined error message to JES2 to be added to the JCL data set
rather than the standard error message. To send an error message, generate
the message text in your exit routine, move it to JCTXWRK, and set the
RDWXXSEM bit in RDWFLAGX to one.

RDWFLAGX has the following structure:

RDWXJCL (X'01') when on indicates that JES2 has detected a JCL
statement

RDWXJECL (X'02') when on indicates that JES2 has detected a JES2
control statement

RDWXJOBC (X'04') when on indicates that JES2 has detected a JOB
statement

RDWXCONT (X'08') when on indicates that JES2 has detected a JCL
continuation statement

RDWXXSNC (X'10') when on indicates that an installation exit has supplied
the next card image

RDWXXSEM (X'20') when on indicates that an installation exit has supplied
an error message

Also note that the standard error message, MSGHASP110, still appears in
SYSLOG on this path, in addition to the installation-defined message.
However, only the installation message will be placed in the JCL data set and
no WTO will be issued for the installation-defined message unless Exit 3
issues the WTO itself.

10. If there is no accounting field on a JOB statement, the length passed by JES2
to the exit routine in R0 is zero. Your exit routine should take this possibility
into account.

11. If you intend to use this exit to process nonstandard accounting field
parameters, you should either suppress later execution of HASPRSCN or you
should code your exit routine to delete nonstandard parameters before passing
control to HASPRSCN. If you do neither, that is, if you allow HASPRSCN to

Exit 3

Exit 3: JOB statement accounting field scan 77

receive the nonstandard parameters, it might cancel the job because of an
illegal accounting field (depending on how the ACCTFLD parameter on the
JOBDEF statement is specified).

If you change the length of the accounting field, you must reload the address
of the last character (or terminator) into field RDWSAVE1.

12. There are three job class fields (JCTJCLAS, JCTCLASS, and JCTAXCLS) in
the JCT. JCTJCLAS is the initial job execution class as set during input
processing and used when building the JQE during that processing.
JCTCLASS is the actual execution class. After input processing it contains the
same value as JCTJCLAS, but it might be updated when the job executes if a
$T command was used to update the job’s class prior to execution. Therefore,
JCTJCLAS and JCTCLASS could be different. JCTAXCLS is a copy of the
actual execution class (JCTCLASS) that is propagated into the network JOB
trailer. Do not use any exit routine to set the JCTAXCLS field.

If you intend to use an exit 3 routine to change the execution class of a job, be
certain to set both the JCTJCLAS and JCTCLASS fields.

Register contents when exit 3 gets control
0 The length of the accounting field, in bytes; if no accounting field

has been specified, this length is zero

1 Address of a 3-fullword parameter list
Word 1 (+0) points to the accounting field (JCTWORK in the

JCT)
Word 2 (+4) points to the exit flag byte, RDWFLAGX in the PCE
Word 3 (+8) points to the JCTXWRK field in the JCT

2-9 N/A

10 Address of the JCT

11 Address of the HCT

12 N/A

13 Address of the HASPRDR PCE

14 Return address

15 Entry address

Register contents when exit 3 passes control back to JES2
0-13 N/A
14 Return address
15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine. If there are no
additional exit routines associated with this exit, use the current
setting of the ACCTFLD parameter on the JOBDEF statement to
determine whether to execute the HASPRSCN subroutine.

4 Tells JES2 to ignore any other exit routines associated with this exit
and to use the current setting of the ACCTFLD parameter on the
JOBDEF statement to determine whether to execute HASPRSCN.

Exit 3

78 z/OS V1R4.0 JES2 Installation Exits

8 Tells JES2 to suppress execution of HASPRSCN and to complete
HASPRJCS processing.

12 Tells JES2 to cancel the job because an illegal accounting field has
been detected. Tells JES2 to suppress execution of HASPRSCN
and to queue the job for output; output (the incomplete JCL images
listing) is produced.

Coded example
Module HASX03A in SYS1.SHASSAMP contains a sample of Exit 3.

Exit 3

Exit 3: JOB statement accounting field scan 79

80 z/OS V1R4.0 JES2 Installation Exits

Exit 4: JCL and JES2 control statement scan

Function
This exit allows you to provide an exit routine for scanning JCL and JES2 control
statements for batch jobs or for profiles specified for transaction initiators. If this exit
is implemented and enabled, it is taken whenever JES2 encounters a JCL or JES2
control statement. (Note: JOB statements and internal reader control statements
such as /*DEL are not included in the scan.)

For JCL statements, your exit routine can interpret JCL parameters and, based on
this interpretation, decide whether JES2 should cancel the job, purge the job, or
allow the job to continue normally. Your routine can also alter JCL parameters and
supply additional JCL parameters. If necessary, in supplying expanded JCL data,
your routine can pass a JCL continuation statement back to JES2. It can also pass
back a new JCL statement, such as a new DD statement.

For JES2 control statements, your routine can interpret the JES2 control
parameters and subparameters and, based on this interpretation, decide whether
JES2 should cancel the job, purge the job, or allow the job to continue normally. For
any JES2 control statement, you can write your exit routine as a replacement for
the standard HASPRCCS control statement routine, suppressing execution of the
standard JES2 scan, or you can perform your own (partial) processing and then
allow JES2 to execute the standard HASPRCCS control statement routine. Also,
your routine can alter a JES2 control statement and then pass the modified
statement back to JES2 for standard HASPRCCS processing, or your routine can
pass an entirely new JES2 control statement back to JES2, to be read (and
processed) as the next incoming statement by HASPRDR.

This exit also allows you to process your own installation-specific JES2 control
statements or to implement new, installation-specific subparameters for existing
JES2 control statements.

This exit gets control when JES2 detects a JES2 control statement or JCL
statement within a job. JES2 also gives control to your exit routine when JES2
detects a JES2 control statement or JCL statement outside a job. JES2 also gives
control to your exit routine when it detects a JCL DD * or DD DATA continuation
statement.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 4 in supervisor state and PSW key 1.

© Copyright IBM Corp. 1988, 2002 81

Restrictions
JES2 does not invoke this exit for JCL from cataloged procedures. Refer to
Appendix A, “JES2 exit usage limitations” on page 277 for other specific instances
when this exit will be invoked or not invoked.

Recovery
$ESTAE recovery is in effect. The recovery routine established by JES2 attempts to
recover from program check errors, including program check errors in the exit
routine itself. However, as with every exit, your exit routine should not depend on
JES2 for recovery. JES2 cannot anticipate the exact purpose of your exit routine
and can therefore provide no more than minimal recovery. You should provide your
own recovery within your exit routine.

Job exit mask
Exit 4 is subject to suppression. You can suppress Exit 4 by either implementing
exit 2 to set the 4th bit in the job exit suppression mask (JCTXMASK) or disabling
the exit in the JES2 initialization stream.

Mapping macros normally required
$HCT, $JCT, $JCTX $MIT, $PCE, $RDRWORK, $BUFFER, $HASPEQU, RPL

Point of processing
This exit is taken from HASPRDR in the JES2 main task. The exit occurs in
HASPRDR’s main processing loop, after HASPRDR has encountered an apparent
JES2 control statement or JCL statement within a job and before control statement
processing.

The exit also gets control after HASPRDR has encountered an apparent JES2
control statement or JCL statement outside a job and before control statement
processing.

When processing JCL DD DATA or DD * continuation statements occurs, this exit
routine also gets control. The exit is invoked after the RCONTNUE subroutine has
detected a continuation statement and just before RCONTNUE returns control to
the calling routine.

Programming considerations
1. This exit is taken once for each control statement (except for JOB statements

and internal reader control statements) encountered by JES2. A code in R0
indicates whether the current statement is a JCL statement or a JES2 control
statement. Your exit routine gets control for //* comment, /* (generated), and /*
PRIORITY JES2 control statements. Your exit routine must not change the
generated statement and is not allowed to add JCL statements into the job’s
input stream when it is processing a generated JCL statement.

When your exit routine gets control for generated statements, JES2 turns on
bit RDWGDDP of field RDWSW1 in the RDRPCE. Your exit routine must not
change the generated statement.

2. During HASPRDR processing, JES2 writes the JCL records to a JCL data set.
If an error occurs during HASPRDR processing, it is the JCL data set that is
printed when the job goes through output processing. If the job is successfully
processed by HASPRDR, the JCL data set is the input for the converter. The

Exit 4

82 z/OS V1R4.0 JES2 Installation Exits

converter produces a JCL images data set, which is the data set that is printed
when the job goes to output processing after being successfully processed by
HASPRDR. Normally, when HASPRDR receives a JES2 control statement
HASPRDR first writes the statement to the JCL data set with the null-on-input
flag set to one. Because the statement is null-on-input it is passed over by the
converter; however, because the null-on-output flag has not been set to one,
the statement appears in user’s copy of the JCL data set if the job bypasses
conversion because an error was detected in HASPRDR processing. Next,
HASPRDR calls one of the specific HASPRCCS control statement processing
routines to perform the function requested by the JES2 control statement.
When the standard routine has completed execution, HASPRDR converts the
JES2 control statement to a comment, sets its null-on-output flag to one, and
writes it to the JCL data set. Because the statement is null-on-output, it does
not appear in the user’s copy of the JCL data set; however, because the
null-on-input flag has not been set to one, the JES2 control statement is read
(as a comment) by the converter. This flagging scheme permits the user to see
each JES2 control statement as it was received by HASPRDR if the job does
not go to the converter, and allows the converter to see each JES2 control
statement as a comment, which will appear in the users output when the JCL
images data set is printed. (Note: The /*$ command and the /*PRIORITY
statements are exceptions.)

When this exit is implemented and enabled, it receives control after the initial
copy of the JES2 control statement, with the null-on-input flag set to one, has
been written to the JCL data set. Therefore, unless your exit routine passes a
return code of 16, which purges the job with no resulting output, the user sees
the JES2 control statement on his output, just as it was received by
HASPRDR, if the job goes directly to output phase (bypassing converter),
otherwise, the user will see it as a comment in the JCL images file.

If you pass a standard return code (of 0 or 4) from your exit routine, the
standard HASPRCCS routine executes. After the HASPRCCS routine is
finished, HASPRDR writes the statement to the JCL data set as a comment
with the null-on-output set to one. This form of the statement will be seen by
the converter, and the converter will place it in the JCL images file.

If you pass a return code of 8, standard HASPRCCS processing is suppressed
and HASPRDR immediately converts the statement to a comment with the
null-on-output flag set, and writes the statement to the JCL data set. This form
of the statement will be seen by the converter, and will be seen by the user as
a comment in the JCL images file when it is printed. Note that, because of the
JCL images output data set seen, the user has no indication that the statement
was not processed normally.

If you pass a return code of 12, normal HASPRDR processing is halted, the
statement is not processed by HASPRCCS, nor is it written to the JCL data set
as a comment. The user sees the original statement on his output, as the last
statement in the JCL data set, indicating that this JES2 control statement
caused the job to be cancelled.

Finally, return code 16 also halts normal HASPRDR execution, but with no
resulting output; the user has no indication of why his job failed.

3. When passing a return code of 0, 4, or 8, you may supply an additional
statement image to be read and processed as the next statement in the input
stream. For JCL statements, this can be a continuation statement or a new
statement. For JES2 control statements, this must always be a new statement.
To return this additional statement to JES2, move the statement image to the
JCTXWRK field and set the RDWXXSNC bit in the RDWFLAGX byte to one.

RDWFLAGX has the following structure:

Exit 4

Exit 4: JCL and JES2 control statement scan 83

RDWXJCL (X'01') when on indicates that JES2 has detected a JCL
statement.

RDWXJECL (X'02') when on indicates that JES2 has detected a JES2
control statement.

RDWXJOBC (X'04') when on indicates that JES2 has detected a JOB
statement.

RDWXCONT (X'08') when on indicates that JES2 has detected a JCL
continuation statement.

RDWXXSNC (X'10') when on indicates that an installation exit has supplied
the next card image.

RDWXXSEM (X'20') when on indicates that an installation exit has supplied
an error message.

4. To entirely replace standard HASPRCCS processing for a particular JES2
control statement, write your routine as a replacement version of the standard
HASPRCCS routine and then pass a return code of 8 back to JES2 to
suppress standard processing. Note that your routine becomes responsible for
duplicating any HASPRCCS function you wish to retain. If you merely want to
supplement standard HASPRCCS processing, you can write your exit routine
to perform the additional function and then, by passing a return code of 0 or 4,
direct JES2 to execute the standard HASPRCCS routine.

5. To nullify a JES2 control statement, pass a return code of 8 to JES2 without
using your exit routine to perform the function requested by the statement.
Note that, based on the JCL images output data set, the user is not informed
that the statement was nullified.

6. To modify a JES2 control statement, also use return code 8. Place the altered
statement in JCTXWRK and set RDWXXSNC to one. If HASPRDR processing
is successful, the user will see in the output of the JCL images file the original
statement (as a comment statement), and the altered statement (also as a
comment statement). Note, that if you modify a JES2 control statement and
then pass a return code of 0 or 4, JES2 carries out normal HASPRDR
(HASPRCCS) processing, and the modified version of the statement will
appear on the user’s output in the JCL images file, but the original statement
will not appear unless you go directly to output phase (bypassing the
converter); then, the user will see the original statement when the JCL data set
is printed.

7. Also use return code 8 in processing your own installation-specific JES2
control statements. Write your exit routine to perform the function requested by
the statement and then pass return code 8 to JES2 to suppress standard
processing and thereby prevent JES2 from detecting the statement as “illegal.”

8. Extending the JCT Control Block

You can use the $JCTX macro extension service to add, expand, locate, and
delete extensions to the job control table ($JCT) control block from this exit.
For example, you can use these extensions to store job-related information.

9. To process your own installation-specific JES2 control statement
subparameters, you should generally write your exit routine to replace standard
HASPRCCS processing entirely. That is, write your exit routine to perform the
function(s) requested by the standard parameters and subparameters and
those requested by any unique installation-defined subparameters on a
statement. Then, from your exit pass a return code of 8 back to JES2. Usually,
because the parameters and subparameters on a JES2 control statement are
interdependent, you will be limited to this method. However, if you have
defined an installation-specific subparameter which can be processed

Exit 4

84 z/OS V1R4.0 JES2 Installation Exits

independently of the rest of the control statement on which it appears, you can
write your exit routine to process this subparameter alone, then to delete it,
and then to pass a return code of 0 or 4 to JES2. JES2 can then process the
remainder of the statement as a standard JES2 control statement.

10. When passing a return code of 12 or 16, it is also possible for your exit routine
to pass an error message to JES2 for display at the operator’s console. To
send an error message, generate the message text in your exit routine, move
it to JCTXWRK, and set the RDWXXSEM bit in RDWFLAGX to one.

11. If you intend to use this exit to affect the JCT, your exit routine must ensure the
existence of the JCT on receiving control. If the JCT has not been created
when your exit routine receives control, the pointer to JCTXWRK, the third
word of the 3-word parameter list whose address is passed to your exit routine
in R1, is zero. For example, when your exit routine receives control for a
/*PRIORITY statement, the JCT doesn’t exist yet. In this case, your routine
must store any data to be placed in the JCT until JES2 creates the JCT.

12. Your exit routine does not have access to the previous control card image. You
should take this into account when devising your algorithm.

13. An 80-byte work area, JCTXWRK, is available for use by your exit routine. If
your routine requires additional work space, use the GETMAIN macro to obtain
storage (and the FREEMAIN macro to return it to the system when your
routine has completed).

14. Exit 4 can use field JCTIPRIO to force a priority for a job subject to the
limitations of the input device’s priority increment and priority limit values.
When exit 4 receives control, a value of C’*’ in JCTIPRIO indicates a priority
has not been forced by an exit routine. If you wish to force a priority in exit 4,
set JCTIPRIO to a value between 0 and 15 in the low-order four bits on the
field.

Note: Whether you may set field JCTIPRIO and the allowable values depend
on the specific exit.

Register contents when exit 4 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 A code indicating whether a JES2 control or JCL control statement
is being processed
0 indicates a JES2 control statement
4 indicates a JCL statement

1 Pointer to a 3-word parameter list with the following structure:
Word 1 (+0) address of the control statement image buffer
Word 2 (+4) address of the exit flag byte, RDWFLAGX, in the

PCE
Word 3 (+8) address of the JCTXWRK field in the JCT

2-9 N/A

10 Address of the JCT (if available. For example, if this exit encounters
a /*PRIORITY JES2 control statement the JCT will not be
available.)

11 Address of the HCT

12 N/A

13 Address of the PCE

Exit 4

Exit 4: JCL and JES2 control statement scan 85

14 Return address

15 Entry address

Register contents when exit 4 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-13 N/A
14 Return address
15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine. If there are no
additional exit routines associated with this exit, perform standard
HASPRDR processing.

4 Tells JES2 to ignore any other exit routines associated with this exit
and to perform standard HASPRDR processing.

8 For JES2 control statements, tells JES2 not to perform standard
HASPRCCS processing; instead, immediately convert the statement
to a comment (//*) with the null-on-input flag set to one and write
the statement to the JCL data set. For JCL statements, tells JES2
to perform standard HASPRDR processing.

12 Tells JES2 to cancel the job because an illegal control statement
has been detected; output (the incomplete JCL images listing) is
produced.

16 Tells JES2 to purge the job because an illegal control statement
has been detected; no output is produced.

Note: For all JES2 control statements preceding the JOB card, a return code
higher than 4 is ignored.

Coded example
Module HASX04A in SYS1.SHASSAMP contains a sample of Exit 4.

Exit 4

86 z/OS V1R4.0 JES2 Installation Exits

Exit 5: JES2 command preprocessor

Function
This exit allows you to preprocess most JES2 commands. If this exit is implemented
and enabled, all but the following commands are available for preprocessing.
v $Mnn
v $Nnnnn
v $P JES2,ABEND,FORCE
v $T CKPTDEF,RECONFIG=YES
v Monitor commands –

– $JD DETAILS
– $JD HISTORY
– $JD JES
– $JD MONITOR
– $JD STATUS
– $J STOP

You can use your exit routine to perform your own command validation and, based
on the checking performed by your validation algorithm, decide whether JES2
should terminate processing for the command or allow normal JES2 command
processing to continue. If you use your exit routine to terminate processing for a
command, the command subprocessor is bypassed and the requested action is not
taken.

This exit also permits you to implement your own installation-specific JES2
command operands and suboperands, and nonstandard JES2 commands unique to
your installation. Your exit routine must process nonstandard, installation-specific
operands, suboperands, and commands itself, and then suppress standard JES2
command processing. Nonstandard command processing is considered in greater
detail in the “Other Programming Considerations” below.

When suppressing standard JES2 command processing, you have the option of
directing JES2 to send the standard “OK” return message to the operator, sending
your own exit-generated message to the operator, or of suppressing standard JES2
command processing without operator notification.

Macro $CFSEL can help you process command operand strings.

The JES2 command translator migration aid:
JES2 provided a compatibility and migration aid in the form of an automatically
invoked Exit 5 routine in OS/390 Version 2 Release 4 and up. However, this exit 5
command translation routine is no longer automatically loaded and enabled as of
z/OS V1R2. The command translation module, HASX05C, is shipped (unchanged)
in SYS1.SHASSAMP as of z/OS V1R2.

IBM recommends that you use the most current command syntax. However, if this
is not possible, install the JES2 command translation exit (member HASX05C in
SYS1.SHASSAMP). On the next JES2 restart, supply the following initialization
statements:

LOAD(HASX05C)
EXIT(5) ROUTINES=(HASX5CTR)

© Copyright IBM Corp. 1988, 2002 87

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

If additional EXIT(5) statements are found in the initialization stream, they will
override this default. To include the translation function in this case, HASX5CTR
should be added to the list of routines on the EXIT(5) statement.

The following table lists those commands translated by the exit routine:

Table 6. Old/New Comparison of JES2 Commands

Pre-HJE6604 Format Translated Command

$D’name’,... $DJOBQ’name’,CMDAUTH=*,...

$T’name’,... $TJOBQ’name’,...

NOTE: Similar for $A, $C, $E, $H, $L, $O, $P, $T, $TO

$DJ1,2,... $DJ(1, 2),...

NOTE: J can be J, JOB, S, STC, T, TSU.

NOTE: Similar for $a, $C, $E, $H, $L, $O, $P, $TO

$DJ1–2, J3–4,... $DJ(1–2, 3–4)...

NOTE: Similar for $A, $C, $E, $H, $L, $O, $P, $TO

$LJnnn,ALL $DOJnnn

$LJnnn,H $DOJnnn,HELD

$LJnnn,READY $DOJnnn,READY

$LJnnn,OUTGRP=xxx $DOJnnn,OUTGRP=xxx

$CJnnn,OUTGRP=xxx $COJnnn,OUTGRP=xxx

$PJnnn,OUTGRP=xxx $POJnnn,OUTGRP=xxx

$PJnnn,Q=x $POJnnn,Q=x Unless Q= is a valid job
queue (XEQ, PPU, etc.)

$vJnnnn,A=|DAYS=|Hours= $vJnnnn,A>|Days>|Hours>

$TJnnnn,S=sid1,sid2,... $TJnnnn,S=(sid1, sid2,...)

$DSPL,JOBS=nn $DJOBQ,SPOOL=(PERCENT>=nn)

$DSPL,V=xxxxxx, JOBS=nn $DJOBQ,SPOOL=(PERCENT>=nn,
VOLUME=xxxxxx)

$SSPL,V=xxxxxx,... $SSPL(xxxxxx),...

$vIxx $vI(xx)

$TIxx,class-list $TI(xx),C=class-list

$HQ,ALL $TJOBCLASS(*),QHELD=Y

$HQ,C=xyz $TJOBCLASS(x,y,z),QHELD=Y

$AQ,ALL $TJOBCLASS(*),QHELD=N

$AQ,C=xyz $TJOBCLASS(x,y,z),QHELD=N

$PQ,ALL,... $POJOBQ,READY,...

$PQ,Q=xyz,... $POJOBQ,READY,Q=XYZ,...

$OQ,ALL,... $OJOBQ,/R=LOCAL.*,...

$OQ,Q=xyz,... $OJOBQ,/R=LOCAL.*,/Q=xyz,...

$TALL,sid1,sid2,... $TJOBQ(*),/S=(sid1),S=(sid2,...)

$LSYS $DMEMBER

$ESYS,sid $EMEMBER(sid)

$ESYS,RESET=sid $ECKPTLOCK,HELDBY=sid

Exit 5

88 z/OS V1R4.0 JES2 Installation Exits

|
|
|

|

||

||

||

||

|

||

|

|

||

|

||

||

||

||

||

||

||
|

||

||

||

||
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 6. Old/New Comparison of JES2 Commands (continued)

Pre-HJE6604 Format Translated Command

$TSYS,IND=Y/N $TMEMBER(local),IND=Y/N

Note: For ease of coding, some commands which work without translation may be
translated to an equivalent form. For example, RDJ1 is translated to $DJ(1).

For further information about this pre-R4 to post-R4 migration aid, see the Exit 5
documentation in the z/OS JES2 Installation Exits document for the release that you
are migrating from.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 5 in supervisor state and PSW key 1.

Recovery
$ESTAE recovery is not in effect while an exit routine associated with this exit is
being processed. However, you can implement $ESTAE recovery within your
routine. As with all exits, you are responsible for your own recovery within your exit
routine, whether you choose to implement $ESTAE recovery or other recovery
procedures.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCT, $MIT, $PCE, $COMWORK

Point of processing
This exit is taken from the JES2 main task, from the HASPCOME command edit
routine of HASPCOMM. The exit point occurs after the command has been edited
but before lookup in the command selection tables (COMFASTR and COMTAB),
before console authority checking, and before the call to the command
subprocessor.

If your exit routine processes the command, the exit routine is responsible for
performing any necessary security validation or auditing. Also, if your exit routine
sets a return code of 8 or greater, auditing will not occur. If you wish to audit
commands that your exit routine would fail, you must call SAF in your exit routine to
perform the auditing.

Exit 5

Exit 5: JES2 command preprocessor 89

|

||

||

|
|
|

|
|
|

Programming considerations
1. For a multiple command, this exit is taken once for each command verb.

2. The same command can be presented to Exit 5 on multiple members of the
MAS. If the command is operating on a job executing on a different member
than where the command originated, JES2 will send the command to the target
system where it will be reissued. Therefore, to distinguish between the original
command and a reissued command your exit must check the contents of the
COMFLAG3 field of the PCE pointed to by register 13. If the CMB3INTC bit is
on, the command is a reissued command.

It is recommended that one member be chosen to process the command, and
ignore the command on the other members.

3. To preprocess a standard JES2 command, a typical exit routine would perform
some type of validation checking. This validation checking would determine
whether JES2 should terminate command processing or allow standard
command processing to continue. You can base a validation algorithm on
various factors. The fields of the command processor work area of the PCE
contain extensive command-related information that can be used in validation
checking. Note, however, that even if your exit routine validates a command, it
is still possible for JES2 to reject the command based on its standard validation
checking.

4. In processing your own installation-specific JES2 commands, your exit routine
should perform its own validation checking to replace the functions normally
performed by HASPCOME. Your routine should validate the command verb,
contained in the COMVERB field of the PCE’s command processor work area,
with the equivalent of the command table lookup performed by HASPCOME.
This check should determine whether the command has a valid
installation-specific command verb and what action your exit routine should take
based on the verb. Your routine should also perform console authority checking
by testing the COMAUTH field, of the PCE’s command processor work area,
which contains the command’s restriction bits. COMAUTH has the following
structure:

COMS (X'01') when on indicates that the command should be rejected
unless authorized for the system.

COMD (X'02') when on indicates that the command should be rejected
unless authorized for the device.

COMJ (X'04') when on indicates that the command should be rejected
unless authorized for the job.

COMR (X'08') when on indicates that the command should be rejected
if it was entered from a remote work station.

If your routine validates the command, it can then perform the requested
function, serving as the equivalent to a standard command subprocessor. If,
however, your routine determines that the command is not valid, it must
terminate processing for the command internally before returning control to
JES2. Then, it should pass a return code (of 8, 12, or 16) to terminate standard
HASPCOMM processing, with or without an accompanying message to the
operator.

5. When issuing job-related messages, IBM recommends that you have a $CWTO
for a control line if you also specify a console area (L=area). Issue job-related
messages independently from any other messages in your exit; do not include
JOB= or LAST=. Because JES2 inserts the message identifier and a time
stamp, your message should not exceed 16 characters.

Exit 5

90 z/OS V1R4.0 JES2 Installation Exits

There is only one control line for a multi-line WTO, and the remaining lines
(referred to as data lines) cannot exceed 70 characters in length.

Once you have issued any job-related messages, you can then issue all
remaining messages. Structure your logic to reduce dependencies on whether a
console area is specified. Use the following guidelines:

v Assume JES2 issues each single-line and multi-line message independently,
that is, as if no console area was specified.

– Code LAST=YES on a $CWTO for a single-line message. Keep in mind
the message isn’t really a single line if a console area was specified and
JES2 ignores LAST=YES.

– Code LAST=NO on the first and middle lines and LAST=YES on the last
line of multi-line messages.

v If you code JOB=YES on a multi-line message, code it for each line of that
message. For a single or multi-line message with JOB=YES, place the
8-character JOBID followed by a blank in the first nine characters of the
message text of the first or only message line. If a console area wasn’t
specified, JES2 removes the JOBID from the message text, shifts the
remaining text to the left, and issues a WTO with the specified JOBID. If you
are issuing a multi-line message, place nine blanks at the beginning of the
text of all subsequent lines.

v Observe the following line length restrictions to reduce dependencies on
whether an area was specified:

– Place only the JOBID and job name on the first line of a job-related,
multi-line message and not more than 25 characters on the first line of a
non-job-related, multi-line message.

– If JOB=YES, limit the length of subsequent message lines to 61
characters.

– If JOB=NO, limit the length of subsequent message lines to 70 characters.

Refer to z/OS JES2 Macros for more information on the use of the $CWTO
macro.

6. Usually, to process nonstandard operands and suboperands, you must write
your exit routine to replace standard JES2 processing entirely. That is, your exit
routine must process both the nonstandard operands or suboperands and the
standard portion of the command, by performing the function of the standard
command subprocessor. This is usually because the command verb and the
accompanying operands and suboperands are interdependent; the operands
and suboperands modify the action of the command verb and cannot be
processed independently.

7. When passing a return code of 16 and issuing an exit-generated message to
the operator, move the text of the message to the COMMAND field of the
command processor work area in the PCE. Place the length of the message in
R0. Also, be certain to issue the $STORE (R0) macro after loading the message
length in R0 but before issuing the $RETURN macro because $RETURN macro
destroys the contents on register 0. (When passing a return code of 12, to
cause JES2 to issue the standard “OK” return message, you do not have to
supply the message length in R0.)

8. Use the $CWTO macro instruction in this exit to communicate to the operator. If
you use the $CWTO macro, you must do all the processing required by the
specified command within your exit routine and provide a return code indicating
that JES2 should bypass any further processing of the specified command.

Exit 5

Exit 5: JES2 command preprocessor 91

If the command being processed is a reissued command (the CMB3INTC bit in
the COMFLAG3 field of the PCE pointed to by register 13 is on) the message
issued by $CWTO will be displayed in the system log only.

Refer to z/OS JES2 Macros for more information on the use of the $CWTO
macro.

9. When this exit routine operates in a networking environment, your exit must
check the contents of the COMGFLG1 flag byte of the PCE pointed to by
register 13. If the COMG1SSI bit is on, the current command is in subsystem
independent format, and registers 5, 6, and 7 do not contain pertinent
information. (Note: These subsystem-independent commands are also known
as formatted commands and can be issued through $G commands.) The
structure of the subsystem-independent commands is located at COSICMDA in
the mapping macro $COMWORK.

Register contents when exit 5 gets control
The contents of the registers on entry to this exit are:

Register Contents
0-4 N/A
5 Pointer to the address of the current operand*
6 Increment value of 4*
7 Pointer to the address of the last operand*
8-10 N/A
11 Address of the HCT
12 N/A
13 Address of the HASPCOMM PCE
14 Return address
15 Entry address

Note: *Refer to ″Programming Considerations″ for use of these registers in a
networking environment.

Register contents when exit 5 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0 If an exit-generated message is to be passed, this register contains

the length of the message; otherwise, it is not applicable.
1 - 13 N/A
14 Return address
15 Return code

A return code:

0 Tells JES2 that if any additional exit routines are associated with
this exit, execute the next consecutive exit routine. If there are no
other exit routines associated with this exit, continue with normal
command processing.

4 Tells JES2 to ignore any other exit routines associated with this exit
point and to continue with normal command processing.

8 Tells JES2 to terminate standard processing for the command and
to issue the $CRET macro to return control to the main command
processor; the command subprocessors are bypassed.

Exit 5

92 z/OS V1R4.0 JES2 Installation Exits

12 Tells JES2 to terminate standard processing for the command and
to issue the $CRET macro, specifying the standard $HASP000
“OK” message, to return control to the main command processor.
The “OK” message is issued and the command subprocessors are
bypassed.

16 Tells JES2 to terminate standard processing for the command and
to issue the $CRET macro, specifying a message generated by
your exit routine, to return control to the main command processor.
The exit-generated message is issued and the command
subprocessors are bypassed.

Coded example
Modules HASX05A and HASX05C in SYS1.SHASSAMP contain examples of Exit 5.

Exit 5

Exit 5: JES2 command preprocessor 93

|

94 z/OS V1R4.0 JES2 Installation Exits

Exit 6: JES2 converter exit (subtask)

Function
This exit allows you to provide an exit routine for scanning resolved
Converter/Interpreter (C/I) text. If this exit is implemented and enabled, it is taken
after the converter has converted each JCL statement into C/I text and once after
all of the JCL for a particular job has been converted to C/I text.

You can use your exit routine to:

v Interpret C/I text and, based on this interpretation, decide whether JES2 should
either cancel the job at the end of conversion processing or allow it to continue
with normal execution.

v Pass messages to the converter that it will write to the JCLMSG data set for the
job.

v Modify the C/I text.

After the converter has processed the entire job, this exit again allows you to direct
JES2 either to cancel the job or to allow it to continue with normal execution.

C/I text is represented by ‘keys’ that identify the various JCL parameters. These
keys are documented in the JES2 assembly, HASPDOC, which calls macros
IEFVKEYS and IEFTXTFT, which are distributed in SYS1.MODGEN. Specifying
KEYS on $MODULE causes IEFVKEYS to be expanded; specifying TEXT on
$MODULE causes IEFTXTFT to be expanded. IEFVKEYS contains the definition of
the values for each key, and IEFTXTFT contains the definition of the format of the
Converter/Interpreter text. For more information on C/I text, see z/OS MVS
Installation Exits.

Related exits
Use exit 44 if you need to alter any fields in the job queue element ($JQE). Altering
fields in the $JQE in Exit 6 will not be successful because you are in the subtask
environment.

Recommendations for implementing exit 6
It is important to remember that Exit 6 is invoked because either:
v The converter just completed converting a JCL statement to C/I text
v The converter completed processing the entire job.

You could implement Exit 6 to keep certain counters—for instance, the number of
DD cards received. Then, when the JCL for the entire job has been processed, the
second part of your routine, the part that receives control when the code in R0 is 4,
can determine whether to allow the job to continue based on the contents of these
counters.

You should use extreme caution when modifying C/I text. If any of your changes
cause a job to fail (because of an interpreter error), there will be no correlation of
the error with the resulting abend on the user’s output. To modify or examine the C/I
text:

v Ensure register 0 contains a X’00’ to indicate the invocation of Exit 6 is to
process a converted JCL statement.

© Copyright IBM Corp. 1988, 2002 95

v Use any information from the C/I text for any installation-written control blocks.

v Make any necessary modifications to the C/I text. z/OS MVS Installation Exits
describes the rules for changing C/I text to ensure the changes you make will not
cause the other problems in your installation, such as loss of data, loss of
integrity and performance.

Note:

– You may want to issue messages to the JCLMSG data set to track the
changes you make to the C/I text since none of the changes you make will be
reflected in the job’s output. However, the changes you make will be reflected
in the jobs SWA control blocks.

– If you need to change the job class or the job priority, use the JCTJCLAS or
JCTPRIO fields in the JCT. When conversion and all Exit 6 processing is
completed for a job, JES2 will use these fields to update the corresponding
JQE fields, JQEJCLAS and JQEPRIO. JES2 also ensures that these changes
are checkpointed.

– If you need to change the scheduling environment you should update the
internal text for the job card. The converter validates the scheduling
environment after Exit 6 receives control. If the scheduling environment is not
valid, JES2 fails the job with a JCL error.

Alternatively, you can supply a scheduling environment directly in the
JCTSCHEN field in the JCT. You should delete any scheduling environment
text unit in the internal text to prevent the converter from validating it. You
must supply a valid scheduling environment in JCTSCHEN or the system
cannot schedule the job for execution.

v Set the appropriate return code in register 15 or perform additional processing.

If you decide to fail the job, you should issue error messages to the operator and to
the user. You can fail the job in Exit 6 by either:

v Setting flag CNMBFJOB in byte CNMBOPTS of the CNMB. Refer to z/OS MVS
Installation Exits for information on obtaining and initializing the CNMB. If you set
this flag, the converter continues to convert the job’s JCL and will fail the job after
it has completely processed the job. You can only fail the job in this manner
when register 0 contains a X’00’.

v Setting a return code of 8 in register 15 before returning to JES2.

If you want to issue messages to the:

v JCLMSG data set, you should obtain a CNMB and initialize it with the message
text. You can not issue any messages to the JCLMSG data set, if this is the last
invocation of the exit (register 0 contains a 4). Refer to z/OS MVS Installation
Exits for additional information on how to initialize the CNMB.

v Operator or user, issue a $WTO macro.

Environment

Task
JES2 subtask. You must specify ENVIRON=SUBTASK on the $MODULE macro.

Restrictions
v Do not attempt to modify checkpointed data from this exit.

Exit 6

96 z/OS V1R4.0 JES2 Installation Exits

v Refer to Appendix A, “JES2 exit usage limitations” on page 277 for a listing of
specific instances when this exit will be invoked or not invoked.

v Exit 6 must be MVS reentrant. Refer to “Reentrant Code Considerations” in
Chapter 2 for more information.

v Do not alter any fields in the $JQE. The changes will not be successful because
you are in the subtask environment.

v Do not attempt to control the processing of the MVS converter by changing the
C/I text at Exit 6. The converter does not examine the C/I text returned from the
exit to determine what changes have been made. For example, you cannot use
this exit to execute a procedure other than the one initially named on the EXEC
statement, nor can you use this exit to control the printing of JCL statement
images by altering the MSGLEVEL parameter on the JOB statement.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 6 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
Exit 6 is subject to suppression. The installation can implement exit 2 to set the 6th
bit in the job exit suppression mask (JCTXMASK) or the installation can indicate the
exit is disabled in the JES2 initialization stream.

Storage recommendations
v Private subpool that resides below 16-megabytes
v Word 1 in register 1 contains the address of a 16-byte work area

Mapping macros normally required
$DTE, $DTECNV $HASPEQU, $HCT, $JCT, $JCTX, $MIT, $XIT, CNMB, KEYS,
TEXT

Point of processing
This exit is taken from HASCNVT, the JCL conversion processor subtask, from
within HASPCNVS at the following two times:

1. JES2 first gives your exit control after the converter has successfully converted
a complete JCL job into its equivalent C/I text. The exit receives control once for
each complete JCL statement unless the converter determines that any JCL
statement for this job is in error. A complete JCL statement is considered to be a
single JCL statement with all of its continuations. When Exit 6 is invoked, the
user’s JCL has been merged with the expanded JCL from PROCLIB, and all
substitutions for symbolic parameters have been made. Therefore, all of the
standard modifications that JES2 will make to the C/I text are complete when
the exit receives control.

2. JES2 also gives your exit control after all of the JCL for a particular job has
been converted to C/I text even if the converter did detect a JCL statement that
was in error. It occurs at the return from the link to the converter, before JES2

Exit 6

Exit 6: JES2 converter exit (subtask) 97

creates the scheduler work area (SWA) control blocks. JES2 will not create the
scheduler work area (SWA) control blocks until all the JCL for a particular job
has been converted to C/I text.

Programming considerations
1. If you suspect that an exit routine associated with this exit is causing a problem,

the most expedient method of debugging is to disable the exit to determine
whether the problem still occurs when your exit routine is not executed. Then, if
the problem seems to be within your exit routine, you can test the routine by
turning on the tracing facility.

The trace record serves as a valuable debugging aid because it contains two
copies of each C/I text, one before the call to your exit routine and one after the
call to your exit routine. However, do not turn on tracing in your normal
production environment or you will seriously degrade the performance of your
system.

2. Extending the JCT Control Block

You can use the $JCTX macro extension service to add, expand, locate, and
delete extensions to the job control table ($JCT) control block from this exit. For
example, you can use these extensions to store job-related information.

3. If you need to change the scheduling environment, use the JCTSCHEN field in
the JCT.

Register contents when exit 6 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 A code indicating the status of conversion processing
0 Indicates that a JCL statement has been converted

to C/I text.
4 Indicates that the converter has completed

converting the job to C/I text. This is the final
invocation of Exit 6 for the job.

1 Address of a 5-word parameter list

Word 1 (+0) Address of a 16-byte work area available to the
installation.

Word 2 (+4) If the code passed in R0 is:

v 0, this word points to the address of a 8192
(2000 hex) byte buffer that contains the C/I text
of the converted JCL statement.

v 4, this word contains the address of the
converter’s return code.

Word 3 (+8) Address of the $DTE

Word 4 (+12) Address of the $JCT

Word 5 (+16) JES2 sets this to 0 before it passes control to the
exit routine.

2-10 Not applicable

11 Address of the $HCT

12 N/A

Exit 6

98 z/OS V1R4.0 JES2 Installation Exits

13 Address of an 18-word OS-style save area

14 Return address

15 Entry address

Register contents when exit 6 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents

0 Not applicable on return

1 Address of a 5-word parameter list

Word 5 (+16) Address of a CNMB to be processed by the
converter. If you wish to pass a message(s) that the
C/I will include in the JCLMSG data set for the job,
this must contain the address of the CNMB (see
z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC)
for information about the IEFCNMB macro).

2-13 Not applicable

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, execute the next consecutive exit routine. If there are no
more exit routines associated with this exit point, continue with
normal JES2 processing. If the exit routine was called when register
0 contains a X’00″, normal processing is the conversion of the next
JCL statement. If the exit routine was called when register 0
contains a X’04’, normal processing is to queue the job for
execution.

4 Tells JES2 to ignore any additional exit routines associated with this
exit for this C/I text and continue with normal processing. If the exit
routine was called when register 0 contains a X’00’ normal JES2
processing is the conversion of the next JCL statement. If the exit
routine was called when register 0 contained a X’04’, normal JES2
processing is to queue the job for execution.

8 Tells JES2 to bypass execution and cancel the job; the job is
queued for output rather than for execution. Conversion will
continue until all JCL has been converted.

Coded example
Module HASX06A contains a sample of Exit 6.

Exit 6

Exit 6: JES2 converter exit (subtask) 99

100 z/OS V1R4.0 JES2 Installation Exits

Exit 7: control block I/O (JES2)

Function
This exit allows you to provide an exit routine to:
v Receive control whenever control block I/O is performed by the JES2 main task.
v Perform I/O for any installation-specific control blocks you may have created.

Related exits
Whenever control block I/O is performed by a JES2 subtask or by a routine running
in the user environment, Exit 8 provides the same function. In the HASPFSSM
address space, Exit 25 provides this function.

Recommendations for implementing exit 7
If you are performing I/O for a $JCT, then you can use this exit to determine the
queue on which a job resides at any point of processing at which JCT I/O is
performed for the JES2 main task.

To determine which queue the job is currently on:

1. Ensure the control block is the $JCT by comparing the value in X007CBID with
the characters ’JCT’.

2. Take the offset in the JCTJQE field of the JCT and add the offset to $JOBQPTR
to locate the JQE.

3. Access the JQE and locate the JQETYPE field. JQETYPE can then be tested to
determine on which queue, out of ten general queues, the current job resides.
The following table lists the ten possible queues along with their corresponding
hexadecimal representations in JQETYPE:
$XEQ X'40'
$INPUT X'20'
$XMIT X'10'
$RECEIVE X'04'
$OUTPUT X'02'
$HARDCOPY X'01'
$PURGE X'00'
$FREE X'FF'
$SPIN X'80'

Note: The $XEQ queue is actually two general queues, the conversion queue
(which is X'40') and the execution queues. The class of each execution
queue is indicated by the low-order 6 bits. For example, execution class “A”
is X'41'. The scheme is similar to the EBCDIC character conversion chart in
the MVS Reference Summary

Programming considerations
The following are processing considerations for Exit 7:

v Use the PCEID field to determine which processor is reading or writing the JCT;
this avoids unnecessary processing.

v You can determine if Exit 7 is being invoked for a transaction program or a batch
job by either:

– Determining if a $DSCT is contained in the $IOT.

© Copyright IBM Corp. 1988, 2002 101

– Determining if byte JCTFLAG3 is set to JCT3TPI to indicate the job is a
transaction program.

v Bit X007CBIN in the parameter list indicates that the control block contains either
an incorrect eyecatcher or job key. When this bit is on, the exit should not rely on
the contents of the control block. After the exit returns, JES2 will issue a
disastrous error.

v Extending the JCT Control Block

If field X007CBID contains the 4-character string ’JCT ’ (note the trailing blank),
you can add, expand, locate, and remove extensions to the job control table
($JCT) control block from this exit using the $JCTX macro extension service for
all control block WRITEs.

For control block READs you should neither add nor expand extensions, because
JES2 might not write any modifications from control block READs to spool. For
more information about using the $JCTX macro extension service, see z/OS
JES2 Macros.

Point of processing
Exit 7 is taken from the JES2 main task in the HASPNUC module, just after the
control block is read from or just before the control block is written out to spool.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places Exit 7 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
Exit 7 is subject to suppression. The installation can suppress the exit by either
implementing exit 2 to set the 7th bit in the job exit suppression mask (JCTXMASK)
or by indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $HCT, $MIT, $PCE, $XPL

Register contents on entry to exit 7
Register Contents
0 A pointer to a parameter list with the following structure, mapped by

$XPL:

Field Name Description
XPLID The eyecatcher

Exit 7

102 z/OS V1R4.0 JES2 Installation Exits

XPLLEVEL Maintenance level
XPLXITID Exit number
XPLXLEV Version number
XPLCOND Condition byte JES2 sets the condition byte with

one of the following bit settings:
X007CBWR Control block is to be written
X007CBUN Unknown control block read
X007CBIN Invalid control block read

X007RESP Not applicable on entry to Exit 7
XPLSIZE Length of parameter list
X007CBID The 4-character EBCDIC control block identifier

1 Address of the buffer that contains the control block
2-10 N/A
11 Address of $HCT
12 N/A
13 Address of $PCE
14 The return address
15 The entry address

Register contents when exit 7 passes control back to JES2
Register Contents
0 A pointer to a parameter list, mapped by $XPL:

Field Name Description
XPLRESP Response byte. Turn the X007IOER bit setting on in

the response byte if an I/O error occurred. Upon
return to JES2, JES2 will issue message
$HASP096. If there are any other exits associated
with this exit, they are ignored, and normal
processing continues.

1-13 Unchanged
14 Return address
15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine. If there are no other
exit routines associated with this exit, continue with normal
processing, which is determined by the particular exit point from
which the exit was called.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

8 Tells JES2 that an I/O error was encountered. Message $HASP096
is issued. If there are any other exit routines associated with this
exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASX07A in SYS1.SHASSAMP contains a sample of Exit 7.

Exit 7

Exit 7: control block I/O (JES2) 103

104 z/OS V1R4.0 JES2 Installation Exits

Exit 8: control block read/write (user, subtask, and FSS)

Function
This exit allows you to provide an exit routine to receive control whenever a JES2
subtask, FSS printer, or a routine running in the user environment performs control
block I/O.

You can use this exit to perform I/O for any installation-specific control blocks you
may have created.

Related exits
Whenever control block I/O is performed by the JES2 main task, Exit 7 serves the
purpose of this exit.

If you intend on updating information for a transaction program, you should consider
implementing Exit 31.

Programming considerations
The following are programming considerations for Exit 8:

v You can determine if Exit 8 is being invoked to process a transaction program by
either:
– Determining if a $DSCT is contained in the $IOT
– Determining if byte JCTFLAG3 is set to JCT3TPI

v If you need to alter information for a transaction program, you should make
changes in the $DSCT rather than the $JCT. If you update the $JCT for a
transaction program, the updates you make may not be applicable. You should
consider implementing exit 31 if you will be updating the $DSCT for a transaction
program.

v Extending the JCT Control Block

If field X008CBID contains the 4-character string ’JCT ’ (note the trailing blank),
you can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTXGET macro. For more information about using this service,
see z/OS JES2 Macros.

Point of processing
This exit is taken from the user address space (HASCSRDS).

JES2 gives control to your exit routine:

v Before it writes a control block and it writes the $CHK, $JCT, $IOT, $OCT, or
$SWBIT into storage.

v After it reads a control block and it reads the $CHK, $JCT, $IOT, $OCT or
$SWBIT into storage.

Environment

Task
v User address space

v JES2 subtask

© Copyright IBM Corp. 1988, 2002 105

v FSS address space using $CBIO.

You must specify ENVIRON=SUBTASK or ENVIRON=USER on the $MODULE
macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Restrictions
Exit 8 must reside in common storage

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
Exit 8 is subject to job exit mask suppression unless $JCT unavailable.

Mapping macros normally required
$HASPEQU, $HCCT, $JCT, $JCTX, $MIT, $XPL

Register contents on entry to exit 8
The registers contain the following on entry to Exit 8:

Register Contents

0 A pointer to a parameter list with the following structure, mapped by
$XPL:

Field Name Description

XPLID The eyecatcher

XPLLEVEL Maintenance level

XPLXITID Exit number

XPLXLEV Version Number

XPLCOND Condition byte JES2 sets the condition byte with
one of the following bit settings:

X008CBWR Control block is to be written

X008CBUN Unknown control block read

X008CBIN Invalid control block read

X008FSSM CBIO performed by FSSM

XPLRESP Response byte

XPLSIZE Length of parameter list

X008CBID The 4-character EBCDIC control block identifier

1 Address of the control block

2-10 N/A

11 Address of the $HCCT

Exit 8

106 z/OS V1R4.0 JES2 Installation Exits

12 N/A

13 Address of an OS-style save area

14 Return address

15 Entry address

Register contents on return to JES2
Upon return to JES2, the contents of the registers must be:

Register Contents

0 A pointer to a parameter list, mapped by $XPL

Field Name Description

XPLCOND Condition byte.

X008RESP Response byte. Turn the X008IOER bit setting on in
the response byte if an I/O error occurred. After
returning to JES2, JES2 issues message
$HASP370. If there are any other exits associated
with this exit, they are ignored, and normal
processing continues.

1-14 Unchanged

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are
associated with this exit, call the next consecutive
exit routine. If there are no other exit routines
associated with this exit, continue with normal
processing, which is determined by the particular
exit point from which the exit was called.

4 Tells JES2 that even if additional exit routines are
associated with this exit, ignore them; continue with
normal processing, which is determined by the
particular exit point from which the exit routine was
called.

8 Tells JES2 that an I/O error was encountered.
Message $HASP370 is issued. If there are any
other exit routines associated with this exit, ignore
them; continue with normal processing, which is
determined by the particular exit point from which
the exit routine was called.

Coded example
Module HASX08A in SYS1.SHASSAMP contains a sample of Exit 8.

Exit 8

Exit 8: control block read/write (user, subtask, and FSS) 107

108 z/OS V1R4.0 JES2 Installation Exits

Exit 9: output excession options

Function
This exit allows you to choose how JES2 will process jobs or transaction programs
that have exceeded the estimates for either:
v Output records
v Lines of SYSOUT data
v Pages of SYSOUT data
v Bytes of SYSOUT data

A user submitting a job can specify the estimates on either the JES2 /*JOBPARM
JECL statement or the JOB JCL statement. If a job submitter does not specify the
estimates, JES2 obtains the estimates from the ESTLNCT, ESTPUN, ESTPAGE, or
ESTBYTE JES2 initialization statements.

Transaction programs obtain the output limits for SYSOUT data sets from TP
profiles.

Related exits
JES2 will not invoke Exit 9 for jobs that exceed the OUTLIM specification. You
should implement SMF exit IEFUSO - SYSOUT Limit Excession to process any
jobs that exceed the OUTLIM specification. Refer to z/OS MVS Installation Exits for
additional information on SMF exit IEFUSO.

Exit 9 is invoked for a transaction program if your installation has implemented exit
43 to set the excession limits for SYSOUT data set created by a transaction
program.

Environment

Task
USER task:
v User’s address space
v JES2 address space - converter subtask

You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 9 in supervisor state and PSW key 0.

Restrictions
Exit 9 should reside in either common storage (CSA) or in the link pack area (LPA).

Recovery
$ESTAE is in effect and provides minimal recovery. JES2 will attempt to recover
from any program check errors experienced by Exit 9. However, you should not
depend on JES2 for recovery and should implement a recovery procedure

© Copyright IBM Corp. 1988, 2002 109

Job exit mask
Exit 9 is subject to suppression.

Mapping macros normally required
$HASPEQU, $HCCT, $JCT, $JCTX, $MIT, $XPL

Point of processing
From the user’s address space, JES2 invokes Exit 9 if the output limits have been
exceeded while writing records to a SYSOUT data set. The output limits for a job
are specified either in the:
v JES2 initialization stream
v job’s JCL or JECL.

Programming considerations
The following are programming considerations for Exit 9:

v You can determine if JES2 invoked Exit 9 to process a transaction program by
determining if byte JCTFLAG3 is set to JCT3TPI.

v If exit 9 is processing a multi-transaction program, Exit 9 is invoked for every
transaction submitted under the multi-transaction program.

v If Exit 9 is invoked from the JES2 address space, you cannot change the output
excession limits for any of the following JES2 system data sets:
– JES2 job log
– JES2 messages
– JES2 images file

JES2 ignores any action taken in Exit 9 for the data sets.

v Extending the JCT Control Block

You can add, expand, locate, and remove extensions to the job control table
($JCT) control block through the $JCTX macro extension service.

v Exit 9 is entered for each PUT if the limit(s) have been exceeded. Ensure that
any increment provided takes this into account.

Register contents on entry to exit 9
The contents of the registers on entry to this exit are:

Register Contents

0 Not used

1 Pointer to a 12-byte parameter list with the following structure:

Field Name Description
XPLID Eyecatcher - $XPL
XPLLEVEL Version level of $XPL
XPLXITID Exit identifier number - 9
XPLEXLEV Version level of the exit
X009IND Indicates the environment from which Exit 9 was

invoked. A value of:

v X009USER indicates which address space
invoked Exit 9. Refer to Programming
Considerations for additional information.

Exit 9

110 z/OS V1R4.0 JES2 Installation Exits

|
|

v X009CNCL indicates CANCEL was specified on
the job’s JOB statement.

v X009DUMP indicates DUMP was specified on
the job’s JOB JCL statement.

v X009WARN indicates WARNING was specified
on the job’s JOB JCL statement.

X009COND Indicates which SYSOUT limit was exceeded. A
value of:

v X009CEXC indicates the SYSOUT data set
exceeded the cards limit.

v X009LEXC indicates the SYSOUT data set
exceeded the lines limit.

v X009PEXC indicates the SYSOUT data set
exceeded the pages limit.

v X009BEXC indicates the SYSOUT data set
exceeded the bytes limit.

X009RESP Response byte
X009JCT Address of the $JCT.
X009LVAL Number of lines specified for the job’s output limit.
X009PVAL Number of pages specified for the job’s output limit.
X009BVAL Number of bytes specified for the jobs output limit.
X009DLIN The print/punch record count (in packed decimal

format) for the job.
X009DPAG The page count (in packed decimal format) for the

job.
X009DBYT The byte count (in packed decimal format) for the

job.
XPLSIZE Length of $XPL including base section

2-10 Not applicable

11 Address of the $HCCT

12 Not applicable

13 Address of a save area

14 Return address

15 Entry address

Register contents when exit 9 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0 Unchanged from entry
1 Address of $XPL

Field Name Description

XPLID Eyecatcher - $XPL

XPLLEVEL Version level of $XPL

XPLXITID Exit identifier number - 9

XPLEXLEV Version level of the exit

X009RESP Indicates processing options for the job. To indicate

Exit 9

Exit 9: output excession options 111

Exit 9 changed the processing options you must set
X009USRB and if you want to:

v Suppress error messages indicating the job has
exceeded its specified output limits, you should
set X009RESP to X009SDEM.

v Change how JES2 processes a job when a
SYSOUT data set created by a job exceeds its
output limits. If you want to:

– Abend the job and produce a dump, set
X009RESP to X009XOVR and X009722D.

– Cancel the job, set X009RESP to X009XOVR
and X009722N.

– Issue a warning message, set X009RESP to
X009XOVR.

v Specify new increments for the output limits by
setting X009OLIR and increases in one or more
of the following:
– X009RINC
– X009PINC
– X009BINC

XPLSIZE Length of $XPL including base section

X009RINC Exit 9’s increase for records

X009PINC Exit 9’s increase for pages

X009BINC Exit 9’s increase for bytes
2-14 Unchanged from entry registers
15 Return code

A return code of:

0 Indicates JES2 should continue processing with the next exit
routine if one exists.

4 Indicates JES2 should continue processing but ignore any
additional exit routines.

Coded example
Module HASX09B in SYS1.SHASSAMP contains a sample of Exit 9.

Exit 9

112 z/OS V1R4.0 JES2 Installation Exits

Exit 10: $WTO screen

Function
This exit allows you to provide an exit routine to receive control every time that
JES2 is ready to queue a $WTO message for transmission. If this exit is
implemented and enabled, it receives control for all messages destined for remote
stations and for other systems, as well as for all messages with a destination of
local.

However, this exit does not receive control for messages generated by the
subsystem interface or functional subsystem modules.

You can use your exit routine to interrogate the message’s console message buffer
(CMB) and, based on this interrogation, direct JES2 either to cancel the message or
to queue it for normal transmission. You can also use your exit routine to change
the text of the message or to alter its console routing.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 10 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros nrmally required
$CMB, $HASPEQU, $HCT, $MIT, $PCE

Point of processing
This exit is taken from the JES2 main task, from the HASPWQUE (special purpose
CMB queueing) routine of the HASPCON (console support services) module, for all
JES2 main task $WTO messages. The exit occurs at the beginning of HASPWQUE,
after the $WTOR routine has processed the $WTO macro and before HASPWQUE
queues the CMB containing the message for transmission. If, by passing a return
code of 0 or 4, your routine allows the message to continue, control returns to
HASPWQUE, which then queues the message for transmission. If, however, your
exit routine cancels the message by passing a return code of 8, the transmission
queueing performed by HASPWQUE is bypassed and JES2 gives control to
$FRECMBR, the $FRECMB service routine.

© Copyright IBM Corp. 1988, 2002 113

Programming considerations:
1. This exit is taken only for $WTOs issued from the JES2 main task.

2. To cancel a message, pass a return code of 8 to JES2. This return code directs
JES2 to bypass the HASPWQUE routine, which normally queues the CMB for
the console service processor, and to give control directly to the $FRECMBR
routine, which then discards the message by freeing its CMB.

3. To change the text of a message, your routine must access either the
CMBTEXT field or the CMBJOBN field. If the message does not contain the
job’s name and number, the message text starts in CMBJOBN. The length of
the message is always in the CMBML field. Your routine can either retrieve the
existing message text and modify it or else generate a completely new message
and then write the new or modified message over the original message. If the
new or modified message is longer or shorter than the original message,
your routine should alter the CMBML field accordingly. After altering the text
of the message, pass a return code of 0 or 4 to direct JES2 to queue the CMB
for transmission. JES2 will then send the new or modified message.

CAUTION:
Altering or deleting an end-line of a multi-line WTO can put JES2
command processing in a Wait State and no more responses to
commands will be received.

4. To alter a message’s console routing, your routine should first test the flag byte
CMBFLAG to determine whether the CMBFLAGW, CMBFLAGT, and
CMBFLAGU flags are off. If these three flags are off, the CMBROUT field
contains the MVS console routings. After altering CMBROUT, pass a return
code of 0 or 4 to direct JES2 to queue the CMB for transmission. JES2 will
base its console routing on the new contents of CMBROUT.

5. If register 0 contains a value of 4 when this exit is invoked, do not take any
action that will result in a wait. For example, do not issue a $WAIT or do not
invoke another service, such as $QSUSE, that might issue a $WAIT. A $WAIT
can cause problems such as line time-outs or cause JES2 to terminate.

Register contents when exit 10 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 Indicates whether JES2 can tolerate a $WAIT:

v If register 0 contains a value of 0, JES2 can tolerate a $WAIT.

v If register 0 contains a value of 4, JES2 cannot tolerate a $WAIT.
1 Address of the $CMB
2-10 N/A
11 Address of the $HCT
12 N/A
13 Address of the $PCE
14 Return address
15 Entry address

Register contents when exit 10 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0 N/A
1 Address of the $CMB

Exit 10

114 z/OS V1R4.0 JES2 Installation Exits

2-14 Unchanged
15 A return code

A return code of:

0 Tells JES2 that if any more exit routines are associated with this
exit, execute the next consecutive exit routine. If there are no more
exit routines associated with this exit, continue with normal
processing by queueing the CMB for transmission.

4 Tells JES2 to ignore any additional exit routines associated with this
exit and to continue with normal processing by queueing the CMB
for transmission.

8 Tells JES2 to discard the message by freeing the CMB; the
message is not queued for transmission.

Coded example
Module HASX10A in SYS1.SHASSAMP contains a sample of exit 10.

Exit 10

Exit 10: $WTO screen 115

116 z/OS V1R4.0 JES2 Installation Exits

Exit 11: spool partitioning allocation ($TRACK)

Function
This exit allows you to provide an exit routine from the JES2 main task that selects
the spool volumes from which a job should allocate additional spool space when
JES2 determines that additional spool volumes should be added to the available
volumes for the job.

Prior to implementing this exit, you must determine if your installation uses spool
partitioning. Your installation uses spool partitioning if FENCE=ACTIVE=YES is
specified on the SPOOLDEF initialization statement.

Related exits
If you implement spool partitioning in Exit 11, you must also implement its
companion, Exit 12.

Recommendations for implementing exit 11
To allow a job or transaction program to allocate spool space from another spool
volume:

1. Modifying a 32-byte work area passed in register 1. Each bit in the IOTSAMSK
corresponds to a spool volumes defined to your installation and represents an
entry in the direct access spool data set dsect ($DAS). When a bit in the work
area is set to:

0 It indicates the spool volume is not currently available to the job
and is a candidate for use by Exit 11.

1 It indicates the spool volume is already allocated to the job.

You must implement Exit 11 so that it sets at least one additional bit in the work
area to allow the job to allocate spool space from at least one additional spool
volume. If Exit 11 does not make at least one spool volume available, JES2 will
allocate spool space by either:

v Resetting all the bits to ones to allow the job to obtain spool space from any
spool volume defined to the system.

v Resetting a single bit as indicated by the FENCE=ACTIVE=YES parameter
on the SPOOLDEF initialization statement.

2. Place a X’08’ in register 15 and return to JES2.

If your routine passes a return code of 8 to JES2 but hasn’t actually expanded
the mask via the new mask returned in the spool mask work area, JES2 sets
the spool partitioning mask as indicated by the FENCE= parameter on the
SPOOLDEF initialization statement and to reissue the $TRACK request.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

© Copyright IBM Corp. 1988, 2002 117

Supervisor/problem program
Exit 11 is placed in supervisor state and PSW key 1.

Restrictions
You should not change the definition of the spool space from which a
multi-transaction program allocates spool space. If you alter the volumes from which
the multi-transaction program can allocate spool space, you may experience
unpredictable results.

Recovery
Because Exit 11 is called from every stage in JES2 processing, there are significant
variations the recovery environments JES2 provides for Exit 11. For example, when
$TRACK is called from HASPRDR, an error in your exit routine may cause only the
current job to fail; however, when $TRACK is called from HASPNET, an error in
your exit routine may cause JES2 itself to fail. As with every exit, your exit routine
should not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose
of your exit routine, and therefore any standard JES2 recovery that happens to be
in effect is, usually, minimal. You should provide your own recovery within your exit
routine.

Job exit mask
Exit 11 is subject to suppression. Exit 11 can be suppressed by either implementing
exit 2 to set the 11th bit in the exit suppression mask (JCTXMASK) or by disabling
the exit in the JES2 initialization stream.

Mapping macros normally required
$BUFFER, $DAS, $HASPEQU, $HCCT, $HCT, $IOT, $JCT, $JCTX $MIT, $PCE,
$SCAT, $TAB, $XECB, RPL

Point of processing
This exit is taken from the JES2 main task, from the $TRACK subroutine in
HASPTRAK, when JES2 determines that the spools allowed mask for the job
(IOTSAMSK) needs to be updated. The spools allowed mask will be updated in two
different situations:

v The job is using the maximum number of volumes ($FNCCNT in HCT) and there
is no space available for allocation (ie. the volume is full, the volume is not
available for allocation or the volume does not have affinity for the system) on
the spool volumes from which the job is permitted to allocate space.

v The job is not yet using the maximum number of spool volumes (SPOOLDEF
FENCE=VOLUMES=nnnn) regardless of whether there is space available on the
spool volumes from which the job is permitted to allocate space.

Exit 11 is not invoked if any of the following are true:

v The job is permitted to allocate space from any spool volume, that is, the spool
partitioning mask (IOTSAMSK/JCTSAMSK) for the job is set to all ones (X’FF’).

v Spool partitioning is in effect, the job is using the maximum number of spool
volumes and space is available on those spool volumes.

Initially when a job or transaction program is started, JES2:

1. Sets the JCTSAMSK to all zeroes to prohibit the job from allocating space from
any spool volume

Exit 11

118 z/OS V1R4.0 JES2 Installation Exits

2. Determines if you have implemented spool partitioning. If you have not
implemented Exits 2, 11, and/or 12 and have specified the
FENCE=ACTIVE=NO parameter on the SPOOLDEF initialization statement,
JES2 automatically sets JCTSAMSK to all ones so that the job can allocate
spool space from any spool volume.

Programming considerations
The following are programming considerations for Exit 11:

v If you intend to base your allocation algorithm on values contained in fields of the
$JCT, you must consider that the $JCT is sometimes unavailable and write a
section of your exit routine to take control in these instances.

v Locating JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTXGET macro.

v You can determine if a job or transaction program is requesting additional spool
space by either:
– Determining if a $DSCT is contained in the $IOT
– Determining if byte JCTFLAG3 is set to JCT3TPI.

v Determining whether a job is at its fencing limit or not

– Spool partitioning is active if $MVFENCE is on.

– The field $FNCCNT contains the fencing limit (SPOOLDEF
FENCE=VOLUMES=nnnn).

– CCTSPLAF contains the mask of spool volumes with affinity for this member.

– Only count the volumes that have affinity for this member and are in the IOT
spools allowed mask when checking to see if the job has reached the fencing
limit. To do this, ’and’ CCTSPLAF with IOTSAMSK and then use the $CNTBIT
macro to obtain the number of volumes to compare with $FNCCNT. The
number of bits on in IOTSAMSK may be equal to or exceed $FNCCNT and
another volume should still be added if the job obtained some of its spool
space on another member which has affinity to different spool volumes.

– CCTVBLOB is the mask of spool volumes with space in the BLOB. Adding a
spool volume that is not in CCTVBLOB will do no good since there is no
space for it in the BLOB and therefore the job will not be able to allocate
space on the volume.

Register contents when exit 11 gets control
Register Contents
0 Not applicable
1 Address of the 3-word parameter list, having the following structure:

word 1 (+0) Address of $IOT

word 2 (+4) Address of $JCT (if available); otherwise 0 For
example, the $JCT is unavailable when JES2 is
acquiring:
v Space for the spooled remote messages or

multi-access spool messages
v A record for the $IOT for the JESNEWS data set.

word 3 (+8) Address of a 32-byte spool partitioning mask work
area which is copied from the IOTSAMSK field in
the $IOT.

2-10 Not applicable

Exit 11

Exit 11: spool partitioning allocation ($TRACK) 119

11 Address of $HCT
12 N/A
13 Address of $PCE
14 Return address
15 Entry address

Register contents when exit 11 passes control back to JES2
Before returning to JES2, the contents of the registers must be:

Registers Contents

0-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, execute the next consecutive exit routine. If there are no
additional exit routines associated with this exit point, this return
code tells JES2 to set the spool partitioning mask as indicated by
the FENCE parameter on the SPOOLDEF initialization statement
setting and to reissue the $TRACK request.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; instead, set the spool partitioning mask as
indicated by the FENCE parameter on the SPOOLDEF initialization
statement setting and reissue the $TRACK request.

8 Tells JES2 that an updated version of the spool partitioning
mask—with at least one additional bit turned on—has been passed
to JES2 in the spool mask work area and will now determine later
spool allocation. It also tells JES2 to reissue the $TRACK request.

Coded example
None provided.

Exit 11

120 z/OS V1R4.0 JES2 Installation Exits

Exit 12: spool partitioning allocation ($STRAK)

Function
This exit allows you to provide an exit routine from a users address space or JES2
subtask that selects the spool volumes that a job or transaction program should
allocate additional spool space from when JES2 determines that additional spool
volumes should be added to the available volumes for the job.

Prior to implementing this exit, you must determine if your installation uses spool
partitioning. Your installation uses spool partitioning if FENCE=ACTIVE=YES is
specified on the SPOOLDEF initialization statement.

Related exits
If you implement spool partitioning in Exit 12, you must also implement its
companion, Exit 11.

The following table identifies the similarities and differences between exits 11 and
12.

Exit 11 Exit 12

Spool Partitioning
Mask

v Initializes and resets bits in the
mask.

v Can be used to define spool
partitioning for the job

v Can only reset bits in the mask
to allow spool space to be
allocated from additional spool
volumes.

Invoked To Allocate spool space for the first
time for the job.

Allocate additional spool space
when JES2 determines the job’s
spools allowed mask should be
expanded.

Recommendations for implementing exit 12
To allow a job or transaction program to allocate spool space from another spool
volume:

1. Modifying a 32-byte work area passed in register 1. The first $SPOLNUM bits in
the IOTSAMSK correspond to the number of spool volumes defined to your
installation. Each bit represents an entry in the direct access spool data set
dsect ($DAS). When a bit in the work area is set to:

0 It indicates the spool volume is not currently available to the job
and is a candidate for use by Exit 12.

1 It indicates the spool volume is already allocated to the job.

You must implement Exit 12 so that it sets at least one bit in the work area to
allow the job to allocate spool space from at least one additional spool volume.
If Exit 12 does not make at least one spool volume available, JES2 will allocate
spool space by either:

v Resetting all the bits to ones to allow the job to obtain spool space from any
spool volume defined to the system.

v Resetting a single bit as indicated by the FENCE=ACTIVE=YES parameter
on the SPOOLDEF initialization statement.

© Copyright IBM Corp. 1988, 2002 121

2. Place a X‘08’ in register 15 and return to JES2.

If your routine passes a return code of 8 to JES2 but hasn’t actually expanded
the mask via the new mask returned in the spool mask work area, JES2 sets
the spool partitioning mask as indicated by the FENCE= parameter on the
SPOOLDEF initialization statement and to reissue the $STRAK request.

Environment

Task
USER task:
v Users address space
v JES2 subtask

You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places exit 12 in supervisor state and PSW key:

Environment Key
User 0
Subtask 1

Restrictions
You should not change the definition of the spool space from which a
multi-transaction program allocates spool space. If you alter the volumes from which
the multi-transaction program can allocate spool space, you may experience
unpredictable results.

Recovery
Because Exit 12 is called from every stage in JES2 processing, there are significant
variations the recovery environments JES2 provides for Exit 12. For example, when
$STRAK is called from HASPRDR, an error in your exit routine may cause only the
current job to fail; however, when $STRAK is called from HASPNET, an error in
your exit routine may cause JES2 itself to fail. As with every exit, your exit routine
should not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose
of your exit routine, and therefore any standard JES2 recovery that happens to be
in effect is, usually, minimal. You should provide your own recovery within your exit
routine.

Job exit mask
Exit 12 is subject to suppression. You can suppress Exit 12 by either implementing
exit 2 to turn off the 12th bit in the job exit suppression mask (JCTXMASK) or you
can disable the exit suppressed.

Mapping macros normally required
$BUFFER, $DAS, $HASPEQU, $HCCT, $HCT, $IOT, $JCT, $JCTX $MIT, $PCE,
$SCAT, $TAB, $XECB, RPL

Exit 12

122 z/OS V1R4.0 JES2 Installation Exits

Point of processing
This exit is taken from the $STRAK subroutine when JES2 determines that the
spools allowed mask for the job (IOTSAMSK) needs to be updated. The spools
allowed mask will be updated in two different situations:

v The job is using the maximum number of volumes (CCTFNCNT in HCCT) and
there is no space available for allocation (ie. the volume is full, the volume is not
available for allocation or the volume does not have affinity for the system) on
the spool volumes from which the job is permitted to allocate space.

v The job is not yet using the maximum number of spool volumes (SPOOLDEF
FENCE=VOLUMES=nnnn) regardless of whether there is space available on the
spool volumes from which the job is permitted to allocate space.

This exit will not be invoked if any of the following are true:

v The job is permitted to allocate space from any spool volume, that is, the spool
partitioning mask (IOTSAMSK) for the job is set to all ones (X’FF’).

v Spool partitioning is in effect, the job is using the maximum number of spool
volumes and space is available on those spool volumes.

Programming considerations
The following are programming considerations for Exit 12:

v If you intend to base your allocation algorithm on values contained in fields of the
$JCT, you must consider that the $JCT is sometimes unavailable and write a
section of your exit routine to take control in these instances.

v Locating JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTXGET macro.

v You can determine if a job or transaction program is requesting additional spool
space by either:
– Determining if a $DSCT is contained in the $IOT
– Determining if byte JCTFLAG3 is set to JCT3TPI

v Determining whether or not a job is at its fencing limit.

– Spool partitioning is active if CCTSMVFN is on.

– The field CCTFNCNT contains the fencing limit (SPOOLDEF
FENCE=VOLUMES=nnnn).

– CCTSPLAF contains the mask of spool volumes with affinity for this member.

– Only count the volumes that have affinity for this member and are in the IOT
spools allowed mask when checking to see if the job has reached the fencing
limit. To do this, ’and’ CCTSPLAF with IOTSAMSK and then use the $CNTBIT
macro to obtain the number of volumes to compare with CCTFNCNT. The
number of bits on in IOTSAMSK may be equal or exceed CCTFNCNT and
another volume should still be added if the job obtained some of its spool
space on another member which has affinity to different spool volumes.

– CCTVBLOB is the mask of spool volumes with space in the BLOB. Adding a
spool volume that is not in CCTVBLOB will do no good since there is no
space for it in the BLOB and therefore the job will not be able to allocate
space on the volume.

Register contents when exit 12 gets control
Register Contents

Exit 12

Exit 12: spool partitioning allocation ($STRAK) 123

0 Return Code:

RC = 0 Invoked from user address space.

RC = 1 Invoked by jes2 converter subtask.

RC = 2 Invoked by JES2 subtask.
1 Address of the 3-word parameter list, having the following structure:

word 1 (+0) Address of $IOT

word 2 (+4) Address of $JCT (if available); otherwise 0 For
example, the $JCT is unavailable when JES2 is
acquiring:
v Space for the spooled remote messages or

multi-access spool messages
v A record for the $IOT for the JESNEWS data set.

word 3 (+8) Address of a 32-byte spool partitioning mask work
area which is copied from the IOTSAMSK field in
the $IOT.

2-9 Not applicable
10 Address of SJB/SJIOB.
11 Address of $HCCT.
12 N/A
13 Address of $PCE
14 Return address
15 Entry address

Register contents when exit 12 passes control back to JES2
Before returning to JES2, the contents of the registers must be:

Registers Contents

0-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, execute the next consecutive exit routine. If there are no
additional exit routines associated with this exit point, this return
code tells JES2 to set the spool partitioning mask as indicated by
the FENCE parameter on the SPOOLDEF initialization statement
setting and to reissue the $STRAK request.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; instead, set the spool partitioning mask as
indicated by the FENCE parameter on the SPOOLDEF initialization
statement setting and reissue the $STRAK request.

8 Tells JES2 that an updated version of the spool partitioning
mask—with at least one additional bit turned on—has been passed
to JES2 in the spool mask work area and will now determine later
spool allocation. It also tells JES2 to reissue the $STRAK request.

Exit 12

124 z/OS V1R4.0 JES2 Installation Exits

Coded example
None provided.

Exit 12

Exit 12: spool partitioning allocation ($STRAK) 125

126 z/OS V1R4.0 JES2 Installation Exits

Exit 13: TSO/E interactive data transmission facility screening
and notification

Function
This exit allows you to provide an exit routine for enhancing the functions of the
TSO/E interactive data transmission facility. (Note: For a description of this facility,
see z/OS TSO/E Customization. The facility is part of Program Product 5665-285.)

You can use this exit to accomplish the following tasks:

v Screen incoming files as they arrive at the receiver’s network node.

v Notify the receiver that a transmitted file has arrived from either another node or
a spool reload procedure.

Exit 13 is not invoked for NETMAIL sent between TSO/E userids running in the
same JES2 MAS.

Screening incoming files
To screen an incoming file, write an exit routine to perform a validity check of the
file’s control information contained in the network job header (NJH), the network
data set header (NDH), and the peripheral data definition block ($PDDB). Based on
this check, the exit routine can decide to delete the file, to route it to another user,
or to allow it to remain targeted for the TSO/E receiver requested by the sender. If
the sender is identified in the NJHGUSID field of the NJH, JES2 sends the following
message back to the sender after deleting the file:
$HASP548 MAIL TO nodename/userid DELETED, INVALID USERID

The message identifies the intended receiver as userid and the intended receiver’s
node as nodename. When deleting a transmitted file, the exit routine can also
modify the message text (“DELETED, INVALID USERID”) or replace the message
text with a text of its own. Use an exit-generated text to provide the sender with the
specific reason for the deletion.

If this exit is implemented and enabled, it is taken every time the JES2 network
SYSOUT receiver reads and processes the network data set header (NDH) of a file
transmitted through the TSO/E interactive data transmission facility.

Notes:

1. Other subsystems, such as Customer Information Control System (CICS) can
also send data sets to JES2 in a format that will invoke this exit. (Refer to CICS
Customization for further information regarding this format.)

2. JES2 treats a file with an external writer name that matches the receiving userid
the same as other files sent through TSO/E.

Notifying a receiver that a transmitted file has arrived
The MAILMSG= parameter on the NJEDEF initialization statement allows you to
direct JES2 to notify (or not notify) the TSO/E receiver that a transmitted file has
arrived from another node or a spool reload procedure. JES2 invokes the TSO/E
SEND function to issue the following message to the receiver:
$HASP549 MAIL FROM nodename/userid RECORDS nnn

© Copyright IBM Corp. 1988, 2002 127

The message identifies the sender as userid, indicates the system of origin as
nodename, and indicates the number of records in the file by nnn. When ready, the
TSO user can now issue the TSO/E RECEIVE command to accept the file.

Although you can also write an exit routine whose only function is to pass a return
code of 8 to JES2 (which provides the same function as the MAILMSG=Yes
parameter specification), IBM recommends that you use the MAILMSG=Yes
specification for that purpose.

Note that if the exit routine deletes a transmitted file from a remote node or a spool
reload procedure —even when MAILMSG=YES or the exit routine has generated a
return code of 8—JES2 automatically suppresses the $HASP549 notification
message. If the exit routine routes a file to an alternate receiver (that is, a TSO/E
user other than the sender’s intended receiver) and generates a return code of 8 (or
generates a return code of 0 or 4 and MAILMSG=YES), $HASP549 is sent to the
alternate receiver; the original receiver is not notified.

To direct JES2 not to notify the TSO/E receiver that a transmitted file has arrived
from a remote node or a spool reload procedure, write an exit routine to pass a
return code of 12 to JES2.

If Exit 13 passes back a return code 8 or 12, the MAILMSG= parameter on the
NJEDEF initialization statement has no effect. To use this initialization statement,
see z/OS JES2 Initialization and Tuning Reference.

As with screening, you can write an exit routine to examine control information and,
on that basis, notify selected receivers.

Environment

Task
JES2 main task

You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31.

Supervisor/problem program
JES2 places Exit 13 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCT, $JCT, $JCTX $MIT, $NHD, $PCE, $PDDB.

Exit 13

128 z/OS V1R4.0 JES2 Installation Exits

Point of processing
This exit is taken from the JES2 main task, from the network SYSOUT receiver. It is
given control just after the network SYSOUT receiver has read and processed the
network data set header (NDH) of a file transmitted through the TSO/E interactive
data transmission facility. JES2 has built a peripheral data definition block ($PDDB)
from the information in the NDH but has not yet written the $PDDB to spool.

Programming considerations
1. This exit is taken only when a file is received from a user on a different

multi-access spool configuration or non-JES2 system. The exit is not taken if a
file is received from a user on any member of the same multi-access spool
configuration. If you require notification between different members of the
same multi-access spool configuration, use the TSO/E TRANSMIT exit
(INMXZ02).

2. When using the exit to screen transmissions, you can code your exit routine to
examine any of the control characteristics of an incoming file. By using the
received parameter list, the exit routine can interrogate any fields in the NJH,
the NDH, or the $PDDB. You can devise a fairly simple algorithm, with the
validity check based on a single factor. For example, the exit routine can check
the intended receiver’s userid in the PDBUSER field of the $PDDB and
compare it to a list of authorized receivers in an installation-written control
block. Alternately, you can devise a more sophisticated algorithm, basing the
validity check on the comparison of several factors. For example, you can limit
a sender to certain authorized receivers, or you can limit a receiver to certain
authorized senders.

3. In using the exit to initiate receiver notification, you can also code your exit
routine to examine any of the control characteristics of an incoming file. A
selective notification algorithm would perform comparison checks similar to
those performed by a screening algorithm, and, as with a screening algorithm,
can be as simple or as sophisticated as you choose to write it. To implement
universal—as opposed to selective—notification, write an exit routine that
generates a return code of 8 whenever it is entered. This exit, if implemented
and enabled, is taken whenever a file arrives through the TSO/E interactive
data transmission facility; all receivers are notified. However, the intended
receiver is notified only if logged on or if the exit has been coded so the
desired SYSID value is moved to the address given as the fourth word of the
received parameter list.

4. If you use the CICS/OS/VS to JES2 interface to receive data from other
network locations, you need to provide appropriate code to recognize and
process these data sets correctly. This code must set a return code of 0 or 4
on exit to retain these data sets without attempting to send a notification
message. If the use of the CICS interface is limited to a single JES2 external
writer name (for example, the Professional Office Systems-Distributed Office
Support System bridge (PROFS-DISOSS), the recognition process simply
requires that you check either the PDBUSER or JOEUSER field for the single
writer name used for data sets destined for DISOSS. However, more extensive
use of the CICS-JES2 interface requires more complex screening. (For a
description of the CICS-JES2 interface, refer to CICS Customization .)

5. To delete an incoming file, set to one the PDN1NSOT bit in the PDBFLAG1
byte of the $PDDB. Note that even if the exit routine generates a return code
of 8, setting the PDN1NSOT bit to one causes JES2 to suppress the
$HASP549 notification message.

Exit 13

Exit 13: TSO/E interactive data transmission facility screening and notification 129

6. When deleting a file, the exit routine can alter the standard text of the
$HASP548 message by moving the replacement text to the 70-byte area
whose address is the fifth word of the received parameter list. You may want to
code your exit routine with several alternate message texts, each
corresponding to the particular condition that caused the exit routine to delete
the file.

7. To reroute an incoming file to a user other than the intended receiver, replace
the contents of the PDBUSER field of the $PDDB with the userid of the
alternate receiver. The alternate userid must be defined at the network node
that has received the file.

8. Extending the JCT Control Block

You can add, expand, locate, and delete extensions to the job control table
($JCT) control block from this exit using the $JCTX macro extension service.

9. When you write an exit routine that reroutes a file to an alternate receiver and,
at the same time, generates a return code of 8, JES2 issues the $HASP549
message to the alternate receiver and not to the receiver intended by the
sender.

10. If a TSO/E user submits a job to a JES2 job entry network and specifies the
NOTIFY= option on the JOB statement, when the job’s system output reaches
its ultimate destination the SYSOUT receiver issues a notification message to
the TSO/E user. This message ($HASP546 SYSTEM OUTPUT RECEIVED AT
nodename) indicates that the job’s SYSOUT was received and at which node it
was received. NOTIFY= is automatically specified for transmissions that enter
the network through the TSO/E interactive data transmission facility. Since
NOTIFY= is automatically specified and since JES2 views these transmissions
as SYSOUT data sets, JES2 automatically routes the $HASP546 notification
message to the TSO/E sender whenever a transmitted file arrives at this
destination node. However, because several factors can influence the
transmission of the file between its arrival at the destination node and its actual
receipt by a TSO/E end user, users at your installation should be informed that
receipt of the $HASP546 message in no way confirms successful transmission
to the intended TSO/E receiver. Users should also be informed that the
$HASP546 message is not controlled by the NOTIFY option on the TSO/E
TRANSMIT command; JES2 sends this message regardless of whether return
notification has been requested.

11. To specify the particular system in a multi-access spool configuration on which
the TSO/E SEND function will perform receiver notification, code the exit
routine to move the desired SYSID value to the address given as the fourth
word of the received parameter list. The field at this address is one byte in
length and contains the SYSID of the system in the multi-access spool
configuration to which the intended receiver is currently logged on; if the
intended receiver is not currently logged on, this field contains a zero. You may
want to code your exit routine to interrogate the SYSID value byte before
modifying it; if this field contains a zero (indicating that the intended receiver is
not logged on), JES2 sends no message. However, if you code your exit
routine to set a value in the SYSID field and if the user has previously logged
off, the $HASP549 message will be sent to the SYS1.BRODCAST or
userid.BRODCAST data set.

12. Unless you have written an exit routine to perform receiver validation, JES2
does not check to ensure that a received file is destined for a valid TSO/E
userid. Files that arrive with invalid userids may accumulate on receiving
spools. You can use the JES2 $P Q,DAYS= or $P Q,HOURS= commands to
cancel output created a specified number of days (DAYS=) or hours
(HOURS=) before the current time.

Exit 13

130 z/OS V1R4.0 JES2 Installation Exits

13. Two JES2 initialization statements can affect the functioning of the TSO/E
interactive data transmission facility. Unless your installation uses the TSO/E
OUTLIM parameter, of the TSO/E macro, INMXP, to control the size of
transmission files, the JES2 ESTPUN statement should be specified with a
value sufficient in size to accommodate transmission files. Setting the NUM=
parameter on the ESTPUN statement too low will cause the TRANSMIT
command processor to terminate abnormally (D37 ABEND) when a
transmission file exceeds the ESTPUN limit. Also, specifying the JES2
TSUCLASS initialization statement with the NOOUTPUT option prevents the
TRANSMIT command from functioning. Therefore, you should omit the
NOOUTPUT option if you intend to allow users at your installation to send files
through the TSO/E interactive data transmission facility.

Register contents when exit 13 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 Not applicable
1 Pointer to a 5-word parameter list with the following structure:

Word 1 (+0) address of the network job header (NJH)

Word 2 (+4) address of the network data set header (NDH)

Word 3 (+8) address of the peripheral data definition block
($PDDB) built for the received file

Word 4 (+C) address of a 1-byte binary field containing the
SYSID value for the multi-access spool member on
which the intended receiver is currently logged on;
if the intended receiver is not currently logged on,
this field contains a zero

Word 5 (+10) address of a 70-byte message text area for
$HASP548; JES2 has initialized this area to
‘DELETED, INVALID USERID’

2-9 Not applicable
10 Address of the $JCT
11 Address of the $HCT
12 Not applicable
13 Address of the $PCE
14 Return address
15 Entry address

Register contents when exit 13 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-13 Not applicable
14 Return address
15 Return code

A return code:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine; if there are no
additional exit routines associated with this exit, continue with
normal network SYSOUT receiver processing. Note, however, that if

Exit 13

Exit 13: TSO/E interactive data transmission facility screening and notification 131

the exit routine has set to one the PDB1NSOT bit in the
PDBFLAG1 byte of the $PDDB, normal processing is to delete the
file. If the exit routine has altered the PDBWTRID field of the
$PDDB, normal processing is to route the file to a user other than
the sender’s intended receiver. If this return code is set, JES2
processing examines the MAILMSG= parameter on the NJEDEF
initialization statement to determine whether or not to notify a
receiver that a transmitted file has arrived from either another node
or a spool reload procedure.

4 Tells JES2 to ignore any additional exit routines associated with this
exit and to continue with normal network SYSOUT receiver
processing. If this return code is set, JES2 processing examines the
MAILMSG= parameter on the NJEDEF initialization statement to
determine whether or not to notify a receiver that a transmitted file
has arrived from either another node or a spool reload procedure.

Note, however, that if the exit routine has set to one the
PDB1NSOT bit in the PDBFLAG1 byte of the $PDDB, normal
processing is to delete the file and ignore the NJEDEF MAILMSG=
parameter specification. If the exit routine has altered the
PDBWTRID field of the $PDDB, normal processing is to route the
file to a user other than the sender’s intended receiver.

8 Tells JES2 to issue the $HASP549 notification message to the
intended receiver of the transmitted file. Note, however, that if the
exit routine has set to one the PDB1NSOT bit in the PDBFLAG1
byte of the $PDDB, JES2 ignores this return code and suppresses
the $HASP549 message. If the exit routine has altered the
PDBWTRID field of the $PDDB, JES2 routes the $HASP549
message to the user now indicated by the contents of PDBWTRID;
the sender’s intended receiver does not receive this notification
message. If this return code is set, JES2 ignores the NJEDEF
MAILMSG= parameter.

12 Tells JES2 not to issue the $HASP549 notification message to the
intended receiver of the transmitted file. If this return code is set,
JES2 ignores the NJEDEF MAILMSG= parameter.

Coded example
Module HASX13A in SYS1.SHASSAMP contains a sample of Exit 13.

Exit 13

132 z/OS V1R4.0 JES2 Installation Exits

Exit 14: job queue work select – $QGET

Function
This exit allows you to provide an exit routine that incorporates your own search
algorithms for finding work on the job queue. You use your exit routine to search for
an appropriate JQE on the job queue and to indicate when normal JES2 JQE
processing should resume.

Note:

This exit is not called for workload management (WLM) initiator work
selection; rather, you must use Exit 49 for that purpose. Also, you will find it
easier to implement because it does not require that you copy JES2
decision-making algorithms into your exit routine. See “Exit 49: Job queue
work select - QGOT” on page 273.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

This exit is associated with the $QGET routine, in HASPJQS, which is entered to
acquire control of a job queue element (JQE).

The $QGET routine scans the appropriate queue for an element that:
v is not held
v is not already acquired by a previous request to the job queue service routines
v has affinity to the selecting JES2 member
v has independent mode set in agreement with the current mode of the selecting

member.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 14 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCT, $JQE, $MIT, $PCE

© Copyright IBM Corp. 1988, 2002 133

Point of processing
This exit is taken from the JES2 main task, from the $QGET routine of HASPJQS,
after $QGET first obtains control of the shared queues and verifies that the member
is not draining but before it selects a JQE from the appropriate queue.

Programming considerations
1. The $QSUSE control of the checkpoint record is not maintained if your exit

routine issues a $WAIT or invokes a service that issues a $WAIT. You should
ensure in your exit routine that you retain control of the checkpoint record
before returning to JES2.

2. You must ensure that the spool volumes, where this job allocated space, are
online. Also, the JQE cannot be busy, held, or on an inappropriate queue (such
as the hardcopy queue).

LH R15,$JQEMSKL Get JQE spool
EX R15,EXJQEMVC Get spools used by this job
NC $SPMSKWA,$SPLSLCT ’AND’ with qualifying spools
EX R15,EXJQECLC If all spool volumes are not
BNE NEXTJQE available, get next job

3. Ensure the job affinity will allow the routine to run on this member.
$SETAFF REQUEST=TEST, Test for our affinity

AFFIELD=JQESAF, in the JQE to
AFTOKEN=$AFFINTY, see if we can run it.
REGAREA=$GENWORK,
FAIL=NEXTJOB No, go find next job

4. Ensure the job’s independent mode status matches the member status. If the
member is in independent mode then the job must be in independent mode.

TM $STATUS,$INDMODE Is this member in independent mode?
BO EXIND Yes, make sure job is too
TM JQEFLAG2,JQE2IND Is job in independent mode?
BO NEXTJQE Yes, get next job
B EXAFF No, check affinity

EXIND TM JQEFLAG2,JQE2IND Is job in independent mode?
BZ NEXTJQE No, get next job

5. Ensure that the JQE1ARMH flag is not on. If JQE1ARMH is on, the job has
ended execution and is awaiting a possible restart by the automatic restart
manager; the job cannot be selected.
TM JQETYPE,$XEQ If job is on execution
BNO QGTCONTA queue and is held for
TM JQEFLAG7,JQE7SPIN spin processing in CSA
BO QNEXT bypass the job
TM JQEFLAG1,JQE1ARMH Job held for ARM restart?
BO QNEXT Yes, get next JQE

6. The address returned in the QGET parameter list must be the address of a JQA
in update mode. That is, it must have been retrieved via $DOGJQE
ACTION=(FETCH,UPDATE), $DOGJQE ACTION=(FETCHNEXT,UPDATE), or at
some point changed from read mode to update mode via $DOGJQE
ACTION=(SETACCESS,UPDATE).

Register contents when exit 14 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 Not applicable
1 Pointer to a QGET parameter list having the following structure:

Exit 14

134 z/OS V1R4.0 JES2 Installation Exits

+0 (word 1) Address of the node table
+4 (word 2) Address of control block

v PIT – if INWS
v DCT – if OJTWS or OJTWSC

+8 (word 3) Address of class list (if applicable)
+12 (word 4) Address of the JQE
+16 (word 5) each byte is set as follows:

+16 Length of the class list
+17 Queue type (refer to the $QGET

macro description for a list of these)
This byte is set to ‘00’ for queue
types INWS, OJTWSC, and
OJTWS. Byte 18 (the type flag) is
used to differentiate between these
three queue types.

+18 Work selection type flag
+19 This byte is not part of the interface

2-10 Not applicable
11 Address of the HCT
12 Not applicable
13 Address of the PCE
14 The return address
15 The entry address

Register contents when exit 14 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0 Not applicable
1 Address of a QGET parameter list having the following structure:

+0 (word 1) Address of the node table
+4 (word 2) Address of the control block
+8 Address of the class list
+12 (word 4) Address of the JQE
+16 (word 5) each byte is set as follows:

+16 Length of the class list

+17 Queue type (refer to the $QGET
macro description for a list of these)
This byte is set to ‘00’ for queue
types INWS, OJTWSC, and
OJTWS. Byte 18 (the type flag) is
used to differentiate between these
three queue types.

+18 Work selection type flag

+19 Response byte flags: X’80’ -
Initiator class list optimization not
allowed

2-14 Not applicable
15 A return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with

Exit 14

Exit 14: job queue work select – $QGET 135

this exit, call the next consecutive exit routine. If there are no
additional exit routines associated with this exit continue normal
queue scan processing.

4 Tells JES2 to ignore any other exit routines associated with this exit
and to continue normal queue scan processing.

8 Tells JES2 to bypass normal queue scan processing because a
JQE was found by the exit routine. The address of the JQE the exit
routine found is provided in the fourth word of the QGET parameter
list (the address of which is returned in register 1).

12 Tells JES2 to bypass normal processing because a JQE was not
found.

Coded example
None provided.

Exit 14

136 z/OS V1R4.0 JES2 Installation Exits

Exit 15: output data set/copy select

Function
JES2 calls Exit 15 twice to allow you to instruct JES2 to:

v First: Change the number of copies of the output data set or bypass processing
the current data set when JES2 first selects that data set for output processing

v Second: Print (or not print) a data set separator page for each copy of the output
data set.

The data set separator page exit point allows the exit routine to place a separator
page between data sets. This is similar to the function provided by Exit 1, the
separator page exit. See z/OS JES2 Initialization and Tuning Guide for a sample
standard separator page. If your security policy requires it, use this exit to create
headers that include the security label for each output data set for JES2 managed
printers.

You could also use your exit routine to reset the addresses of the PRTRANS table
and the CCW translate tables. The parameter list passed to your exit routine
contains the default addresses for both the PRTRANS table and the CCW translate
tables. Change the defaults by changing the parameter list to point to your own
PRTRANS table and to point to your own CCW command code translate tables.

When translation is to occur for a local 1403 or a remote printer, the PRTRANS
table translates user data and changes each line to be printed. The default
PRTRANS table changes lowercase letters to uppercase and any characters that
are invalid on a specific universal character set (UCS) to blanks. To determine if
translation will occur, see item 9 on page 138

The CCW table translates user-specified channel commands into
installation-defined channel commands.

CAUTION:

Translation of initialization, diagnostic, or control CCWs may cause
unpredictable results.

Programming considerations
1. Change the following information by changing the values in the parameter list:

a. Copies to be printed (255 maximum)
b. Pointer to translate table
c. CCW translate table

2. Do not produce separator pages if JES2 called this exit for data set select,
because printer setup processing has not occurred yet.

3. To determine if Exit 15 is to produce a data set separator, test bit X015SEPP
in condition byte X015COND of the $XPL. If X015SEPP is on, create a
separator. If X015SEPP is off, do not create a separator.

The SEPDS= parameter on the PRT(nnnn), PUN(nnnn), R(nnnn).PR(m), or
R(nnnn).PU(m) initialization statements indicates whether the installation wants
data set separators created. The operator has the option to change the
SEPDS= value by issuing the command $T device with the SEPDS=
parameter specified. Before invoking Exit 15, JES2 sets bit X015SEPP to
correspond to the current value of the SEPDS= parameter:

© Copyright IBM Corp. 1988, 2002 137

v If SEPDS=YES, JES2 turns on bit X015SEPP.
v If SEPDS=NO, JES2 turns off X015SEPP.

4. The data set copy count and copy group count cannot be changed on the
separator page call to Exit 15 because setup processing has already occurred.
Make these changes during the data set select call to Exit 15.

5. The data set copy group count affects separator pages this exit produces.
JES2 sends the copy to the AFP printer before the calling Exit 15. The printer
repeats all pages, including separator pages, on the basis of the copy group
count.

6. If Exit 15 returns a copy count or a copy group count greater than 255, JES2
writes a symptom record to the logrec data set to a job log and reset(s) the
field(s) in error to 1.

7. If the spooling capabilities of a remote SNA device (such as the 3790) are
operating, use the $SEPPDIR macro to send a peripheral data information
record (PDIR) to the device. Use the $GETBUF macro to supply this routine
with HASP-type buffers and the $FREEBUF macro to release the buffers after
your routine creates the separator.

8. Use SWBTUREQ REQUEST=RETRIEVE to retrieve any parameters a user
specifies on the OUTPUT JCL statement you need to build your separator
page. See z/OS MVS Programming: Assembler Services Reference ABE-HSP
for more details about using the scheduler JCL facility and the SWBTUREQ
macro.

9. For local printers running in JES mode or for remote printers, the TRANS=
parameter on the printer’s initialization statement (statement PRT(nnnn) for a
local printer, and statement R(nnnn).PR(m) for a remote printer) affects data
translation for that printer:
v If the initialization statement specifies TRANS=YES, JES2 translates each

line of output sent to the device regardless of the device type or the setting
of the PRINTDEF TRANS= parameter.

v If the initialization statement specifies TRANS=NO, JES2 does not translate
output sent to the device regardless of the device type or the setting of the
PRINTDEF TRANS= parameter.

v If the initialization statement specifies TRANS=DEFAULT or omits TRANS=,
and the PRINTDEF statement specifies TRANS=YES, and the device is
either a remote printer or a local printer other than an IBM 3211, IBM 3800,
or IBM 3203 printer, JES2 translates each line of output sent to the device.
Otherwise, JES2 does not translate output sent to the device.

10. You can determine whether JES2 invoked Exit 15 to process SYSOUT created
by a transaction program by:
v Determining if field X015DSCT contains the address of a $DSCT
v Determining if byte JCTFLAG3 is set to JCT3TPI

11. Locating JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from
this exit using the $JCTXGET macro. For example, you can use these
extensions to store job-related information. For more information, see z/OS
JES2 Macros.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

Exit 15

138 z/OS V1R4.0 JES2 Installation Exits

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Recovery
$ESTAE recovery is in effect. If a program check occurs in the exit, JES2 interrupts
the output currently processing on the device. The recovery routine will not call Exit
15 to free allocated resources. JES2 places the interrupted output groups in system
hold with an indication that a failure occurred during separator exit processing. As
with every exit, you should supply your own recovery within your exit routine.

Job exit mask
Exit 15 is subject to job exit mask suppression.

Mapping macros normally required
$DCT, $HASPEQU, $HCT, $JCT, $JCTX $JOE, $JQE, $PCE, $PDDB, $XPL

Point of processing
This exit is taken from the JES2 main task in HASPPRPU. The exit is taken once
for each output data set where the $PDDB matches the job output element ($JOE)
and once for each copy of the data set.

Contents of registers on entry to exit 15
Register Contents

0 Not applicable

1 Pointer to a parameter list with the following structure, mapped by
$XPL:

Field Name Description
XPLID The eyecatcher
XPLLEVEL The version level of $XPL
XPLXITID The exit ID number
X015IND Indicator byte. This byte indicates data set selection

or data set separator processing as follows:

X015DSEL Bypass processing the current data
set, or change the number of
copies of the data set to be
produced. (These functions are only
available at data set selection time.)

X015DSEP Produce a data set separator,
change the print translate table,
and change the CCW translate
table. (These functions are only
available at data set copy time.)

X015COND Condition byte.

X015RFSW Identifies whether the current PDDB
has output characteristics identical
to characteristics pointed to by
X015SWBT.

X015SEPP If X015SEPP is on, SEPDS=YES

Exit 15

Exit 15: output data set/copy select 139

was specified for the device and a
separator is to be created.
Otherwise, SEPDS=NO was
specified and no separator is to be
created.

X015RESP Response byte. If the X015BYPS bit setting is on in
the response byte, then the current PDDB will be
bypassed. Otherwise, the current PDDB will be
processed.

X015DCT Address of $DCT
X015JCT Address of $JCT
X015DSCT Address of $DSCT or zeroes for a batch job
X015JQE Address of the JQE
X015WJOE Address of the Work-JOE
X015CJOE Address of the Characteristics-JOE
X015PDDB Address of the PDDB
X015SWBT Address of the SWBTU pointer list mapped by the

SJTRSBTL DSECT in the IEFSJTRP parameter list
for the first PDDB in the JOE. This field is zero if
there is no OUTPUT JCL statement associated with
the first PDDB. JES2 uses the SWBTU associated
with the first PDDB to retrieve the output
identification and delivery information for the entire
output group.

X015NSWB Number of SWBTUs JES2 despooled. z/OS MVS
Programming: Assembler Services Reference
IAR-XCT contains additional information on
SWBTU, and the IEFSJTRP parameter list.

X015PRTR Address of the print translate table
X015CCWT Address of the CCW translate table
X015NCOP The number of copies of this data set originally

requested
X015CPRT The number of copies currently printed
X015CPGP Address of the current copy group
X015CGCT Current copy group count

2-10 Not applicable

11 Address of $HCT

12 Not applicable

13 Address of $PCE

14 Return address

15 Entry address

Contents of register when exit 15 returns to JES2
Register Contents
0 Unchanged
1 Address of a parameter list mapped by $XPL:

XPLRESP This response byte must be set by the exit before
returning to JES2. Set the response byte to
X015BYPS to bypass processing of the current
PDDB. If this byte is equal to some other value, the
current PDDB will be processed.

2-14 Unchanged

Exit 15

140 z/OS V1R4.0 JES2 Installation Exits

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine.

4 Tells JES2 to ignore any other exit routines associated with this
exit.

Coded example
Module HASX15A in SYS1.SHASSAMP contains a sample of Exit 15.

Exit 15

Exit 15: output data set/copy select 141

142 z/OS V1R4.0 JES2 Installation Exits

Exit 16: notify

Function
This exit allows you to change notify message routing and to examine and modify
$WTO messages before they are sent to the TSO/E user.

Use your exit routine and the CMB to access the intended message, change it in
place, or replace it with a new message.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 16 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
Exit 16 is subject to suppression. If the installation sets the 16th bit in the job exit
suppression mask, it should be done only once. All transactions submitted under
this initiator will not invoke Exit 16.

Mapping macros normally required
$CMB, $JCT, $JCTX $HASPEQU, $HCT, $MIT, $PCE

Point of processing
This exit is taken from the output processor in HASPHOPE before sending the
$WTO notify message.

Programming considerations
1. The CMB maps the $WTO parameter list. You map the parameter list by

performing a USING on CMBWTOPL.

2. CMBML in the $WTO parameter list is the length of the message that is
intended to be sent. Whether your exit routine changes the messages in place
or replaces it, you must update CMBML with the length of the new message.
The intended message can be changed in place for up to a length of 86 bytes.

3. To change the node where the notify message is to be sent, move correct node
number NITNUM (of the NIT) to CMBTONOD.

4. To change the TSO/E user that the notify message is to go to store the TSO/E
user id (7-character id) in CMB user.

© Copyright IBM Corp. 1988, 2002 143

5. On return from the exit, JES2 uses the address of the message in the first word
of the parameter list.

6. For a return of 8 from your exit routine, JES2 resumes processing at OPNOTX
in HASPPRPU.

7. Locating JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTXGET macro. For example, you can use these extensions to
store job-related information. For more information, see z/OS JES2 Macros.

Register contents when exit 16 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 A code indicating if this is the first or succeeding $HASP165 (JOB
nnnnn ENDED – reason text) message

0 Indicates that this is the first (and possibly only)
message indicating the end of the job

4 Indicates that this is not the first message for this
job going through the output processor

Note: There is now only one HASP165 notify message for the job.
The indicator is always set to 0 for compatibility.

1 Address of a 3-word parameter list with the following structure:
Word 1 (+0) address of the message that is to be sent
Word 2 (+4) address of the $WTO parameter list
Word 3 (+8) address of the $JCT

2-10 Not applicable

11 Address of the $HCT

12 Not applicable

13 Address of the output processor $PCE

14 Return address

15 Entry address

Register contents when exit 16 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0 Not applicable
1 Address of the 3-word parameter list
2-13 Not applicable
14 Return address
15 A return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine. If there are no
additional exit routines associated with exit continue normal notify
processing.

Exit 16

144 z/OS V1R4.0 JES2 Installation Exits

4 Tells JES2 to ignore any other exit routines associated with this exit
and to continue normal notify processing.

8 Tells JES2 not to issue the notify $WTO.

Coded example
None provided.

Exit 16

Exit 16: notify 145

146 z/OS V1R4.0 JES2 Installation Exits

Exit 17: BSC RJE SIGNON/SIGNOFF

Function
This exit allows you to exercise more control over your BSC RJE remote devices.
With this exit you can implement exit routines to:

v Selectively perform additional security checks beyond the standard password
processing of the sign-on card image.

v Selectively limit both the number and types of remote devices that can be on the
system at any one time.

v Selectively bypass security checks.

v Implement installation-defined scanning of sign-on card images.

v Collect statistics concerning RJE operations on the BSC line and report the
results of the activity.

See Appendix B, “Sample code for exit 17 and 18” on page 279 for an Exit 17
sample code.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 17 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

Storage recommendations

Mapping macros normally required
$DCT, $HASPEQU, $HCT, $MIT, $PCE, $RAT

Point of processing
This exit is taken from the JES2 main task, during BSC RJE sign-on and sign-off
processing of HASPBSC. Three exit points are defined; two sign-on exit points for
performing additional security or checks and one sign-off exit point for gathering
statistics about terminal usage.

The exit gets control during sign-on in the MSIGNON routines of HASPBSC, and
after sign-on and password processing.

© Copyright IBM Corp. 1988, 2002 147

The exit is given control before sign-on and password processing, allowing your exit
routine to scan the incoming sign-on card. Your exit routine may also bypass both
the JES2 syntax checking of the sign-on and the remote and line password
parameters on the sign-on card or just bypass only the sign-on syntax checking.
JES2 also gives the exit control after sign-on and password processing, allowing
your exit routine to provide additional setup of the remote terminal environment.

JES2 also gives the exit control at sign off, after writing the disconnect message at
label MDSWTO.

Programming considerations
1. For exit point MSOXITA (R0=0) your exit routine has the option to return a

return code that allows the user to specify that the sign-on should be rejected. A
return code of 12 or 16 indicates that normal HASPBSC sign-on processing can
be bypassed. In this case your installation exit routine is responsible for
performing all the necessary syntax processing that HASPBSC does and for
returning a valid RAT entry pointer in R0.

2. For the sign-off exit point your exit routine should return a return code of 0 or 4
so that normal processing can continue.

3. To define and implement an installation-defined remote name, change the
remote name to a standard JES2 remote name on the sign-on card and return
with a return code of 0, or supply a valid RAT pointer (valid for the
installation-defined remote name) and return with or return code of 12 or 16.

4. Your installation exit routine should not issue a $WAIT or invoke a service
routine that issues a $WAIT.

5. For the syntax of the sign-on card, see z/OS JES2 Initialization and Tuning
Guide.

6. The $RETURN macro destroys the contents of register 0. Therefore, if you
return the RAT address in R0, be certain to have provided a $STORE R0
instruction before the $RETURN to place the contents of R0 in the current save
area prior to return to JES2.

Register contents when exit 17 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 Indicates whether sign-on or sign-off processing is in effect. The
following values apply:

0 indicates a sign-on before sign-on parameters are
processed.

4 indicates a sign-on after the sign-on parameters
have been processed.

8 indicates sign-off processing.

1 Address of a 5-word parameter list, having the following structure:

Word 1 (+0) address of the remote attribute table (RAT) (for
R0=0 only)

address of the RAT entry (for R0=4 or 8)

Word 2 (+4) address of the line DCT

Exit 17

148 z/OS V1R4.0 JES2 Installation Exits

Word 3 (+8) zero (reserved for SNA)

Word 4 (+12) address of the card image (for R0=0 only)

Otherwise not applicable

Word 5 (+16) length of the card image for R0=0 only)

Otherwise not applicable

(The length is always 80.)

2-10 N/A

11 Address of the HCT

12 N/A

13 Address of the line manager or remote reader PCE

14 Return address

15 Entry address

Register contents when exit 17 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents

0 Address of the remote’s RAT entry when the return code in R15 is
12 or 16 and the sign-on indication in R0 is “0”

Otherwise not applicable

1 N/A

15 A return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine. If there are no
additional exit routines associated with this exit continue normal
sign-on/sign-off processing continues.

4 Tells JES2 to ignore any other exit routines associated with this exit
and to continue normal sign-on/sign-off processing.

8 Tells JES2 to terminate normal sign-on processing. No audit record
is produced in this case. If you require an audit of this failure, your
exit routine must issue a call to SAF to perform the audit.

12 Tells JES2 to call SAF with the remote id set in this exit and the
password received on the /*SIGNON statement.

16 Tells JES2 to call SAF with the remote id from the /*SIGNON
statement but do not verify the password.

Note: RC 8, 12, and 16 are only valid for the exit when called from label MSOXITA
(that is, the first call to the exit, R0=0).

Coded example
See Appendix B, “Sample code for exit 17 and 18” on page 279.

Exit 17

Exit 17: BSC RJE SIGNON/SIGNOFF 149

150 z/OS V1R4.0 JES2 Installation Exits

Exit 18: SNA RJE LOGON/LOGOFF

Function
This exit allows you to exercise more control over your SNA RJE remote devices.
With this exit you can implement exit routines to:

v Selectively perform additional security checks beyond the standard password
processing of the sign-on card image.

v Selectively limit both the number and types of remote devices that can be on the
system at any one time.

v Selectively bypass security checks.

v Implement installation-defined scanning of sign-on card images.

v Collect statistics concerning RJE operations on the SNA line and report the
results of the activity.

See Appendix A, “JES2 exit usage limitations” on page 277 for an Exit 18 sample
code.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 18 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$DCT, $HASPEQU, $HCT, $ICE, $MIT, $PCE, $RAT

Point of processing
This exit is taken from the JES2 main task during the SNA RJE logon and logoff
processing of HASPSNA. Three exit points are defined for logon processing:

v At exit point MSNALXIT for a normal logon during REQ END processing after
label MSNALPAR, your exit routine can be invoked to:

– continue normal logon processing.

– terminate normal logon processing.

– perform password checking but not syntax checking.

– bypass syntax and password checking.

© Copyright IBM Corp. 1988, 2002 151

When using multiple logical units, JES2 invokes Exit 18 from MSNALXIT for each
logical unit on the remote when the logical unit logs on.

v At exit point MSNALXT2 your exit can get control when the remote terminal is
logged on.

v Just before checkpointing the remote autologon at exit point MALGXIT, your exit
can control autologon for the remote terminal.

One exit point (MICEXIT) is defined for logoff processing. This exit point is after
label MICEDMSG in the session control subroutines of HASPSNA before the
remote logoff message is issued. You can use this exit point for gathering statistics
and reporting remote device activity.

Programming considerations
1. In logoff processing, JES2 does not expect a return code from your exit routine.

Normal logoff processing proceeds.

2. Your installation exit routine should not issue a $WAIT or use a service routine
that issues a $WAIT.

3. To define and implement a installation-defined remote name, change the remote
name to a standard JES2 remote name on the remote logon card and return
with a return code of 0, or supply a valid RAT pointer (valid for the
installation-defined remote name) and return with a return code of 12 or 16.

Register contents when exit 18 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 A logon or logoff indication having the following meanings:

0 indicates syntax processing for a normal logon

4 indicates logon processing for a normal logon after
logon parameters have been processed

8 indicates logoff processing

12 indicates autologon processing

1 Address of a 5-word parameter list having the following structure:

Word 1 (+0) address of the remote attribute table (RAT) when
R0 indicates a normal logon process of “0”

address of a RAT entry when R0 indicates other
than a normal logon process (i.e., R0 contains a
value of 4, 8, or 12).

Word 2 (+4)

v 0 during syntax processing (that is, R0=0)

v address of the line DCT after logon is complete
(that is, R0≠0)

Word 3 (+8) address of the ICE

Word 4 (+12) address of the bind user data when R0 indicates
normal logon processing (that is, R0=0). The format

Exit 18

152 z/OS V1R4.0 JES2 Installation Exits

of the bind user data is determined by installation
VTAM application programs that define the bind
user data.

Word 5 (+16) length of the bind user data when R0 indicates
normal logon processing (that is, R0=0).

2-10 N/A

11 Address of the HCT

12 N/A

13 Address of the line manager PCE

14 Return address

15 Entry address

Register contents when exit 18 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents

0 Address of the RAT entry when R15 contains a return code of 12 or
16 and the logon indication in R0 is 0.

Otherwise register 0 is ignored.

1 N/A

15 A return code

A return code:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine. If there are no
additional exit routines associated with this exit continue normal
logon/logoff processing.

4 Tells JES2 to ignore any other exit routines associated with this exit
and to continue normal logon/logoff processing.

8 Tells JES2 to terminate normal logon processing (R0=0 or 12 only).
No audit record is produced in this case. If you require an audit of
this failure, your exit routine must issue a call to SAF to perform the
audit.

12 Tells JES2 to call SAF with the remote id set in this exit and the
password received during logon processing (R0=0 only).

16 Tells JES2 to call SAF with the remote id received during logon
processing but do not verify the password (R0=0 only).

Coded example
See Appendix B, “Sample code for exit 17 and 18” on page 279.

Exit 18

Exit 18: SNA RJE LOGON/LOGOFF 153

154 z/OS V1R4.0 JES2 Installation Exits

Exit 19: initialization statement

Function
This exit allows you to process each JES2 initialization statement before JES2
processes the statement. You can use your exit routine to do any of the following
functions:

v check or analyze each initialization statement.

v alter values supplied on an initialization statement.

v implement your own initialization statements.

v modify, replace, delete, or insert statements in the initialization statement stream.

v terminate JES2 initialization.

v tailor the initialization statement stream to provide for specific requirements of
this start of JES2 (e.g., add or delete parameters based on the period within
administrative cycles or the operator shift).

Environment

Task
JES2 main task (Initialization) – JES2 dispatcher disabled. You must specify
ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 19 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
Exit 19 is not subject to suppression.

Mapping macros normally required
$CIRWORK, $HASPEQU, $HCT, $MIT, $PCE

Point of processing
This exit is taken during JES2 initialization from the initialization routine (IR) that
processes parameter input (IRPL) in HASPIRPL. IRPL is called out of the
initialization routine processing loop (IRLOOP) in HASPIRA before most other IRs
have been called. Previously executed IRs have processed the initialization options,
analyzed the SSI status, and allocated a series of temporary and permanent control
blocks. Exit 0 routines, called during initialization options processing, may have
allocated installation control blocks that may be used now by Exit 19 routines.

HASPIRPL opens the initialization parameter data set (HASPPARM) and then
begins a loop; get an initialization statement from HASPPARM or the operator

© Copyright IBM Corp. 1988, 2002 155

console or a previous insertion by Exit 19, pass it to Exit 19, log the statement,
process the statement using the $SCAN facility if Exit 19 has not indicated it should
be deleted. When all input is exhausted, IRPL closes the parameter and log data
sets.

Programming considerations
1. Your EXIT(nnn) and LOADmod(jxxxxxxx) initialization statements for this exit

must be placed in the initialization deck ahead of those initialization statements
that your exit routine is to scan. The EXIT(nnn) statement must enable
(STATUS=ENABLED) the exit; the $T EXIT(nnn) command cannot be used to
enable (STATUS=ENABLED) the exit at a later time since the point of
processing for Exit 19 is before the time at which the command processor is
made functional.

2. Tracing for this exit is disabled because of its sequence in the initialization
process.

3. JES2 does not have a recovery environment established at the processing point
for Exit 19 (the JES2 ESTAE will process termination, but not recover).

4. Because Exit 19 is called early in JES2 initialization, some main task services
may not be functional and some control blocks and interfaces may not be
established. The JES2 dispatcher is not yet functional, so MVS protocol should
be used in Exit 19 routines (WAIT rather than $WAIT, ESTAE rather than
$ESTAE, etc).

5. The CONSOLE statement simulated after all other parameter input is exhausted
if the CONSOLE initialization option was specified is not presented to Exit 19
exit routines.

6. Exit 19 routines may change the initialization statement passed or replace it by
changing the address and length in the exit parameter list. They may also
indicate, via a return code, that JES2 should bypass processing of the
statement (perhaps because the routine has processed the statement already).
Note that JES2 writes the statement (and any later diagnostics) to the log data
set and hardcopy console only after return from the exit. Therefore the exit
routines may want to log the statement passed from JES2, for diagnostic
purposes, before changing or replacing it. The $STMTLOG macro and service
routine is provided to perform the logging function.

7. Independent of the actions of the exit routine that effect the status of the
statement passed, a new initialization statement may be inserted into the
parameter stream by the exit routine by returning a statement address and
length in the exit parameter list. The inserted statement will be processed when
the current statement is completely processed. Note that the current statement
is not completely processed until either it is bypassed by exit 19, successfully
scanned and processed by JES2, or found to be in error by JES2 and the
resultant operator interaction by JES2 is complete. Since the operator
interaction may involve input of multiple new initialization statements from the
operator, the inserted statement may not be processed until after later calls to
Exit 19. Also, when there are multiple exit 19 routines, only one routine can
perform a statement insertion. For that reason, Exit 19 routines should verify
that the insertion statement address and length in the exit parameter list are
zero before using those fields to insert a statement.

8. The processing that JES2 does for each statement after calling Exit 19 is
performed using the JES2 $SCAN facility and a collection of tables. The tables
define the parameter input allowed and how to process it. The scan may involve
multiple levels of scanning, i.e. parameters which have sub-parameters, etc. At

Exit 19

156 z/OS V1R4.0 JES2 Installation Exits

each level, a new table is used. Each table is actually composed of two tables,
an installation-defined table followed by a JES2-defined table.

By specifying installation-defined tables, an installation can implement its own
initialization parameters on existing JES2 statements, or replace the JES2
definition for existing statements or parameters. Thus this function can be
accomplished without implementing Exit 19, or with an implementation of Exit
19. Also, the $SCAN facility itself can be used from an Exit 19 routine to
process initialization statements.

Register contents when exit 19 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 An indication of how the initialization input was supplied. The
following values in R0 are possible:

0 input came from the HASPARM parameter library
file

4 input came from the console

8 input came from a previous insertion by an Exit 19
routine.

1 A 4-word parameter list having the following structure

Word 1 (+0) address of the initialization statement about to be
processed. You can modify the statement or replace
the statement by altering this field.

Word 2 (+4) length of the complete initialization statement
passed. If you alter the passed statement or
replace it, you should reset this field to the correct
new statement length.

Word 3 (+8) a word that can be used by Exit 19 to specify the
address of an initialization statement you want to
insert at the next possible statement insertion point.
JES2 will log an information diagnostic indicating
the statement was inserted by Exit 19.

Word 4 (+12) length of the initialization statement pointed to by
word 3.

2-10 N/A

11 Address of the HCT

12 N/A

13 Address of initialization PCE – the PCE work area for this PCE is
the common initialization routine work area, mapped by the
$CIRWORK macro.

14 Return address

15 Entry address

Register contents when exit 19 passes control back to JES2
Upon return from this exit, the register contents must be:

Exit 19

Exit 19: initialization statement 157

Register Contents

0-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine. If no additional exit
routines are associated with this exit continue normal initialization
statement processing. The exit routines might have changed or
replaced the initialization statement passed.

4 As for return code 0, except JES2 should ignore any other exit
routines associated with this exit.

8 Tells JES2 to bypass this initialization statement and continue with
the next statement. JES2 will log the statement and a diagnostic
information message indicating it was bypassed by Exit 19.

12 Tells JES2 to terminate all initialization processing and exit the
system. HASPIRPL issues message $HASP864 and returns to the
IRLOOP with

16 As for return code 0, except the system is not to substitute text for
system symbols that are specified in the initialization statement.

Coded example
None provided.

Exit 19

158 z/OS V1R4.0 JES2 Installation Exits

Exit 20: end of input

Function
This exit allows you to do the following:

v Selectively assign a job’s affinity, execution node, and priority based on an
installation’s unique requirements and processing workload.

v Based on installation-defined criteria, terminate a job’s normal processing and
selectively print or not print its output.

Note: Refer to Appendix A, “JES2 exit usage limitations” on page 277 for a listing
of specific instances when this exit will be invoked or not invoked.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 20 in supervisor state and PSW key 1.

Recovery
$ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. You should
provide your own recovery within your exit routine.

Job exit mask
Exit 20 is subject to suppression. You can suppress Exit 20 by either setting the
20th bit in the job exit suppression mask (JCTXMASK) or by indicating the exit is
disabled in the initialization stream.

Mapping macros normally required
$JCT, $JCTX, $HCT, $PCE, $HASPEQU, $MIT, $RDRWORK, $BUFFER, RPL,
$DCT

Point of processing
This exit is taken in the subroutine RJOBEND or in the subroutine RJOBKILL of
HASPRDR in the JES2 main task.

Programming considerations
1. To change affinity, set the RDWSAF field in the HASPRDR PCE work area

using the $SETAFF macro.

To allow the job to run on any member:
$SETAFF REQUEST=ANY,AFFIELD=RDWSAF

© Copyright IBM Corp. 1988, 2002 159

To allow the job to run on only this member:
$SETAFF REQUEST=CLEAR,AFFIELD=RDWSAF

$SETAFF REQUEST=ADD,AFFIELD=RDWSAF
AFTOKEN=$AFFINTY

2. If MVS submits a job through an internal reader, it can force a job’s affinity to
the local member. This can occur when the automatic restart manager restarts a
job. The automatic restart manager expects the job to execute on a specific
member, and will change the job’s affinity so the job can run on that specific
member, if necessary. If the automatic restart manager has changed the job’s
affinity, the RIDALOCL flag in the internal reader DCT is on. You can test this
flag and determine whether the affinity was changed. With that information, you
can then decide whether to avoid changing the affinity.

You can use the following sample code to test whether MVS has forced a job’s
affinity to the local member:
USING DCT,R2
L R2,PCEDCT Get input device
CLI DCTDEVTP,DCTINR Is it an internal reader?
BNE CHANGE No, ok to change affinity
TM RIDFLAGA,RIDALOCL Has MVS set affinity?
BO NOCHANGE Yes, do not change affinity

3. To set independent mode for a job, the installation must turn on the bit
RDW5IND in RDWSW5.

To put jobs that start with the characters ’IND’ into independent mode:
EXIT20 $ENTRY BASE=R12,SAVE=YES Set entry point

LTR R10,R10 If JCT not present
BZ RRET can’t check jobname

CLC =C’IND’,JCTJNAME Job want independent mode?
BNE RRET No, leave flags alone
OI RDWSW5,RDW5IND Set independent mode

RRET $RETURN RC=0 Return to caller

4. To change the priority set JCTIPRIO in the JCT. The priority is contained in the
4 high-order bits of JCTIPRIO. For example, a value of ’C0’ would be a priority
12. (Refer to z/OS JES2 Initialization and Tuning Reference for further details
on setting and changing job priority.)

Note: Whether you may set field JCTIPRIO and the allowable values depend
on the specific exit.

5. Validate all fields in the JCT before using them because not all fields contain
valid values whenever Exit 20 is invoked.

6. Extending the JCT Control Block

You can add, expand, locate, and remove extensions to the job control table
($JCT) control block from this exit using the $JCTX macro extension service.
For example, you can use these extensions to store job-related information. For
more information, see z/OS JES2 Macros.

7. This exit will not be taken under the following circumstances:
v The JES2 input service processor fails the job because JES2 does not

identify a JOB card within the input stream.

8. If you need to change the scheduling environment, use the JCTSCHEN field in
the JCT.

Exit 20

160 z/OS V1R4.0 JES2 Installation Exits

Register contents when exit 20 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 A code indicating:

0 Normal end of input.

4 Job has a JES2 control statement error.

1 Pointer to a parameter list with the following structure, mapped by
$XPL:

Field Name Description

XPLID The eyecatcher.

XPLLEVEL Maintenance level.

XPLXLEV Version number.

XPLXITID The exit ID number.

X020IND Indicator byte.

X020COND Condition byte.

X020GJOB Condition bit that specifies a normal
job.

X020JECL Condition bit that specifies a JECL
error.

X020BSAF Condition bit that specifies a SAF
failure.

X020WSEL Condition bit that specifies the job
failed to meet work selection
criteria.

X020RESP Response byte.

X020NORM Response bit that specifies to do
normal process.

X020OUTP Response bit that specifies to
terminate with output.

X020PURG Response bit that specifies to
terminate job without printing the
output.

X020JCT Address of the JCT.

X020JQE Address of the JQE.

X020DCT Address of the DCT.

2-9 N/A

10 Address of the JCT.

11 Address of the HCT.

12 N/A

13 Address of the HASPRDR PCE.

Exit 20

Exit 20: end of input 161

14 Return address.

15 Entry address

Register contents when exit 20 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents

0 N/A

1 Address of a parameter list mapped by $XPL:

X020RESP Response byte that may be set by the exit before
returning to JES2.

15 Return code.

A return code of:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no additional exit
routines are associated with this exit continue normal processing.

4 Tells JES2 to ignore any other exit routines associated with this exit
and to continue normal processing.

8 Tells JES2 to terminate normal processing and print the output.

12 Tells JES2 to terminate normal processing without printing the
output.

Coded example
None provided.

Exit 20

162 z/OS V1R4.0 JES2 Installation Exits

Exit 21: SMF record

Function
This exit allows you to do the following:

v Selectively queue or not queue the SMF record of JES2 control blocks for
processing by SMF.

v Obtain and create SMF control blocks before queueing.

v Alter content and length of SMF control block before queueing.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 21 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCT, $MIT, $PCE, $SMF

Point of processing
This exit is taken in HASPNUC whenever a JES2 processor queues an SMF record
for eventual processing by the JES2-SMF subtask. The $QUESMFB routine in
HASPNUC places a JES2-SMF buffer on the queue of busy JES2-SMF buffers.
(The $SMFBUSY cell in the HCT points to the busy queue.)

Programming considerations
1. When modifying the SMF record, your exit routine can increase the size of the

SMF record up to a length of SMFLNG (bytes).

2. You can issue $GETSMFB and $QUESMFB in your exit routine.

3. The SMF record type is detected by examining the SMFHDRTY field, not the
SMFTYPE field of the SMF DSECT.

For more information about SMF, see z/OS MVS System Management Facilities
(SMF).

4. You can determine if JES2 invoked exit 21 to record information for a
transaction program by determining if byte JCTFLAG3 is set to JCT3TPI.

© Copyright IBM Corp. 1988, 2002 163

Register contents when exit 21 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 Zero (0)

1 SMF buffer address.

This buffer will contain either an SMF record or a job management
record (JMR) based on the value of field SMFTYPE.

Field Value Record Type
X'00' SMF record
X'40' Large SMF record.
X'80' JMR record.

2-9 N/A

10 Address of the JCT or 0

11 Address of the HCT

12 N/A

13 Address of the caller’s PCE

14 Return address

15 Entry address

Register contents when exit 21 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents

0-13 Not applicable

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine. If no additional exit
routines are associated with this exit continue normal SMF queue
processing.

4 Tells JES2 to ignore any other exit routines associated with this exit
and to continue normal SMF queue processing.

8 Tells JES2 to terminate normal SMF queue processing.

Coded example
None provided.

Exit 21

164 z/OS V1R4.0 JES2 Installation Exits

Exit 22: cancel/status

Function
This exit allows your installation to implement its own algorithms for job queue
searching and for TSO/E CANCEL/STATUS. Your exit routine can perform its own
search for a requested job or transaction program and indicate whether it has found
the job, or it can let JES2 perform the standard search.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 22 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCT, $MIT, $PCE, $STAC, $XPL

Point of processing
This exit is taken just before searching the JES2 job queue for a “status” or “cancel”
request in HASPSTAC of the JES2 main task. The exit is given control twice in
HASPSTAC where HASPSTAC performs the cancel and status functions for the
TSO/E user (STCSTART).

The cancel and status functions execute when a Status/Cancel block (STAC) is
queued to the CCTCSHED FIFO queue in the HCCT. The cancel/status support
routine performs this queueing. JES2 then issues a WAIT (against SJBSECBS) to
wait for the completion of the cancel/status processing.

Programming considerations
1. The return code from your exit routine will cause HASPSTAC to pass back the

proper return code to JES2. JES2 propagates that return code to TSO/E to
issue the appropriate message.

2. For multiple cancel status requests, (your exit routine returned a return code of
12), HASPSTAC returns a 0 return code in the subsystem job block (SSJB).
JES2 propagates that return code to TSO/E in SSOBRETN.

© Copyright IBM Corp. 1988, 2002 165

|

|

|
|
|
|

3. To end a multiple status request your exit routine must return a “0” JQE address
in R1 and issue a return code of 12.

4. The $JCAN macro can be used in your exit routine.

5. Message IKJ56216I can be misleading. The second level message tells the
user that the job queues were searched for job names consisting of the userid
plus one character. You can code your exit so that the job queue is searched for
all of the user’s jobs.

6. First level messages such as IKJ56190I, IKJ56192I, IJK56197I, and IJK56211I
can also be misleading if the exit returned a JQE address in R1 and a return
code of 12. The jobname in these messages is constructed by TSO/E using the
TSO/E user’s userid and the last character of the job name in the JQE that was
selected by this exit. Depending on the job(s) selected by the exit, the
jobname(s) taken from the JQE may not begin with the userid; however, the
jobid in the message(s) is correct for the job processed.

7. You can determine if JES2 invoked exit 22 to process a transaction program by
determining if flag SJBFLGA is set to SJBATP. Otherwise, JES2 invoked exit 22
to process a batch job.

Register contents when exit 22 gets control
The contents of the registers on entry to this exit are:

Register Control

0 Not applicable.

1 Pointer to a parameter list with the following structure, mapped by
$XPL:

Field Name 81

Description XPLID

Eyecatcher XPLLEVEL

Version Level $XPL XPLXITID

Exit ID Number
X022IND

Indicator Byte

X022FRST First call to exit
Indicates a single cancel request or
the first status request determined
by examining the function bit
(SACTFUNC) in the STAC.

X022MURE Multiple recall
Indicates a multiple status recall
request.

X022MUST Multiple status overflow
Indicates a multiple status overflow
condition. 60 The buffer that holds
the status information is too small.

The STAC, mapped by the $STAC macro, is in a data space.
Perform $ARMODE ON before accessing the data and $ARMODE
OFF after finishing the access.

Exit 22

166 z/OS V1R4.0 JES2 Installation Exits

||

||
|

||

||

||

||

|
|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

X022STAC Address of STAC

X022STAA ALET of stack

2-10 N/A

11 Address of the HCT

12 N/A

13 Address of the STATUS/CANCEL PCE

14 Return address

15 Entry address

Register contents when exit 22 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0 Not applicable
1 Address of the JQE for return codes of 8 and 12; otherwise not

applicable
2-13 Not applicable
14 Return address
15 A return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine. If no additional exit
routines are associated with this exit, continue normal processing.

4 Tells JES2 to ignore any other exit routines associated with this exit
and to continue normal processing.

8 Tells JES2 to process a single request.

12 Tells JES2 to process a multiple request.

16 Tells JES2 that the exit routine has done all the processing
requested. HASPSTAC returns a code of 0.

20 Tells JES2 that the job is not found. HASPSTAC returns a code of
4.

24 Tells JES2 that an invalid combination was requested. HASSTAC
returns a code of 8.

28 Tells JES2 that jobs with the same job name were found.
HASPSTAC returns a code of 12.

32 Tells JES2 that the status buffer is too small to hold all the data
requested. HASPSTAC returns a code of 16.

36 Tells JES2 that the job was not cancelled because it is on the
output queue. HASPSTAC returns a code of 20.

40 Tells JES2 that an invalid cancel request was made. HASPSTAC
returns a code of 28.

Note: RC 12 – 40 are only valid for this exit when called from label
STCZEXIT (that is, R0=0 or 4 only).

Exit 22

Exit 22: cancel/status 167

||

||

|

|

44 Tells JES2 that the request should be failed for security reasons
and SSCSAUTH should be returned to the SSI caller.

The returned code causes the correct message to be presented to the TSO/E
interface. For multiple status requests (RC=12), register R1 must be returned with a
zero to end the processing and cause the messages to be issued.

Coded example
None provided.

Exit 22

168 z/OS V1R4.0 JES2 Installation Exits

||
|

Exit 23: FSS job separator page (JSPA) processing

Function
This exit allows you to modify the user-dependent section of the job separator page
data area (JSPA). When JES2 assigns an output group to a functional subsystem
application (FSA), it also creates a JSPA to provide job- and data set-level
information for that data set. The FSA uses this information to generate the job
header, job trailer, and data set header for an output group.

The JSPA contains three sections. HASPFSSM fills in two of these sections, the
JES-dependent section and common section, after this exit returns control to JES2.
Therefore, HASPFSSM over-writes any modifications you make to these sections at
that time. Use this exit to modify the user-dependent fields (JSPAUSR1 and
JSPAUSR2) in the third section, only.

Recommendations for implementing exit 23
You can use Exit 23 to suppress the assignment of a JESNEWS data set by:

1. Turning off the flag bit in the JOE information block (JIB) that indicates
JESNEWS printing.

2. Setting a return code of 8 in register 15. This suppresses both the JESNEWS
data set and the separator pages.

Environment

Task
Functional subsystem (HASPFSSM). You must specify ENVIRON=FSS on the
$MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 23 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine.

Job exit mask
Exit 23 is subject to suppression. You can suppress Exit 23 by either setting the
23rd bit in the job exit suppression mask (JCTXMASK) or by indicating the exit is
disabled in the initialization stream.

Restrictions
You should ensure that your exit routine does not violate your installations security
policy by:
v Overlaying the PSF-defined security label area
v Suppressing required separator pages.

© Copyright IBM Corp. 1988, 2002 169

Mapping macros normally required
$FSACB, $FSSCB, $HASPEQU, $HFCT, $JIB, JSPA, ETD, FSIP

Point of processing
This exit is invoked via the exit effector during GETDS processing. Whenever a new
JIB is initialized during GETDS processing, Exit 23 is invoked in HASPFSSM. At
this time, the associated $JCT, $IOT, and checkpoint records are read and the
JSPA is built.

Refer to “Programming Considerations” below for further coding requirements
associated with this exit.

Programming considerations
1. A save-area type control block is obtained for use as the parameter list loaded

into register 1 when control is passed to the exit routine.

2. The assignment of the JESNEWS data set can be checked in the $JOE
information block ($JIB). The JIBFNEWS bit can be set or reset by the exit
routine; however, if a return code of 8 is returned, the JESNEWS is not
assigned; this is independent of the JIBFNEWS bit setting.

3. IAZFSIP maps the GETDS parameter list.

4. IAZJSPA maps the JSPA parameter list. Flag bit JSPA1UND, when on, indicates
that the userid in field JSPCEUID is an undefined user.

5. Exit 23 routines should issue $SAVE after the $ENTRY macro and return to the
exit effector using $RETURN. These routines also can call subroutines of their
own which also use $SAVE/$RETURN logic.

6. This exit must reside in common storage. Do not linkedit this exit to
HASPFSSM.

7. Locating JCT Control Block Extensions

If the $JCT address is contained in field JIBJCT, you can locate extensions to
the job control table ($JCT) control block from this exit using the $JCTXGET
macro. For example, you can use these extensions to store job-related
information. For more information, see z/OS JES2 Macros.

Register contents when exit 23 gets control
The contents of the register on entry to this exit are:

Register Contents

0 Not applicable

1 Address of a 5-word parameter list, having the following structure:
word1 (+0) JSPA address
word2 (+4) JIB address
word3 (+8) FSACB address
word4 (+12) FSSCB address
word5 (+16) GETDS parameter list address (IAZFSIP)

2-10 Not applicable

11 Address of the $HFCT

12 Not applicable

Exit 23

170 z/OS V1R4.0 JES2 Installation Exits

13 The address of an 18-word save area where the exit routine stores
the exit effector’s registers

14 Return address

15 Entry address

Register contents when exit 23 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-1 Not applicable
2-14 Unchanged
15 A return code

A return code of:

0 Tells JES2, if additional exit routines are associated with this exit, to
call the next consecutive exit routine. If no additional exit routines
are associated with this exit a zero return code tells the FSA to
produce any separator that has been defined by the installation
based on the information contained in the JSPA.

4 Tells JES2 to ignore any additional exit routines associated with this
exit. However, all other processing noted for return code 0 is
accomplished.

8 Tells JES2 to unconditionally suppress production of the job
separator page. The JESNEWS data set is not assigned.

12 Tells JES2 to unconditionally (that is, even if the printer has been
set to S=N) produce any job separator page.

Coded example
Module HASX23A in SYS1.SHASSAMP contains a sample of Exit 23.

Exit 23

Exit 23: FSS job separator page (JSPA) processing 171

172 z/OS V1R4.0 JES2 Installation Exits

Exit 24: post initialization

Function
This exit allows you to make modifications to JES2 control blocks before JES2
initialization ends and to create and initialize control blocks that your installation
defines for its own special purposes.

Environment

Task
JES2 Main Task (Initialization) – JES2 dispatcher disabled

The following JES2 initialization steps have been performed before your exit routine
gets control. Essentially all JES2 initialization is done, but the JES2 warm start
processor has not been dispatched yet to perform its initialization-like processing.

You must specify ENVIRON=JES2 on the $MODULE macro.

1. The JES2 initialization options are obtained from the operator or the PARM
parameter on the EXEC statement and converted into status bits.

2. The JES2 initialization statement data set is read and processed.

3. The direct-access devices are scanned, and eligible spooling volumes are
identified and allocated to JES2.

4. The spooling and checkpoint data sets are examined and initialized for JES2
processing.

5. The subsystem interface control blocks are constructed and initialized.

6. The unit-record devices, remote job entry lines, and network job entry lines are
scanned; eligible and specified devices are located and allocated.

7. JES2 subtasks are attached, and exit routines are located.

8. SMF processing is started by generating a type 43 SMF record.

9. The JES2 control blocks, such as the HASP communications table (HCT), the
device control tables (DCT), the data control blocks (DCB), the processor
control elements (PCE), the data extent blocks (DEB), and the buffers (IOB),
are constructed and initialized.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 24 in supervisor state and PSW key 1.

Recovery
JES2 does not have a recovery environment established at the processing point for
Exit 24 (the JES2 ESTAE will process termination, but not recover).

Job exit mask
This exit is not subject to job exit mask suppression.

© Copyright IBM Corp. 1988, 2002 173

Mapping macros normally required
$CIRWORK, $HASPEQU, $HCT, $PCE

Point of processing
When Exit 24 is called, HASPIRA has called each JES2 initialization routine (IR) in
turn to perform JES2 initialization. After all the IRs have successfully completed,
HASPIRA calls the Exit 24 routine(s) before tracing the JES2 initialization and
returning control to the HASJES20 load module (HASPNUC). On return from
HASPINIT, HASPNUC deletes the HASPINIT load module (if not part of
HASJES20) and passes control to the asynchronous input/output processor,
$ASYNC, resulting in the dispatching of JES2 processors.

Creating an information string through exit 24
This information string gives the installation the option of providing its own
information to applications that request subsystem version information (through SSI
code 54), and to override the information passed by JES2.

Information about defining keywords and values for information strings is provided
in z/OS MVS Using the Subsystem Interface (in the discussion of SSI code 54).

Use the following steps to create an information string during JES2 initialization.
(JES2 does not pass an information build area to Exit 24 during a hot start.)

1. Check the condition byte in field XPLCOND to ensure that the JES2 is warm
starting, quick starting, cold starting, or restarting through a $E MEMBER
RESTART command.

2. Check the information build area length in field X024SSWL to ensure that the
area is large enough to accommodate the installation string. If the area is too
small, ensure that Exit 24 bypasses the installation code that builds the string.

3. Obtain the pointer to the information build area from field X024SSIA, then move
the installation string into the build area.

4. Initialize field X024SSIL with the length of the string.

5. Set flag X024RSSI in the XPL response byte to indicate that Exit 24 is supplying
an information string before returning to JES2 initialization.

Once JES2 processing validates the variable information string, the HASPIRA
module obtains storage in ECSA. Then JES2 moves the variable information string
from the build area pointed to by X024SSIA to extended common storage.

Programming considerations
1. The EXIT(nnn) statement for Exit 24 must specify STATUS=ENABLED for the

exit; the $T EXIT(nnn) command cannot be used to enable
(STATUS=ENABLED) the exit at a later time since the point of processing for
Exit 24 is before the time at which the command processor is made functional.

2. Because Exit 24 is called from JES2 initialization, the JES2 dispatcher is not yet
functional; so MVS protocol should be used in Exit 24 routines (for example,
WAIT rather than $WAIT and ESTAE rather than $ESTAE).

3. If Exit 24 returns a return code of 8, HASPIRA issues message $HASP864
INITIALIZATION TERMINATED BY INSTALLATION EXIT 24. The $HASP428
message will also be issued before final termination.

Exit 24

174 z/OS V1R4.0 JES2 Installation Exits

4. Your exit routine can access JES2 control blocks through the HCT. Your exit
routine can then access DCTs, PCEs, buffers, the UCT, etc. for making
modifications.

5. Your exit routine is responsible for establishing addressability to your own
special control blocks. The HCT points to the optional user-defined UCT and
other areas are provided in the HCT for various installation uses, identified by
labels $USER1 through $USER5.

Register contents when exit 24 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 Not applicable

1 Pointer to a parameter list with the following structure, mapped by
$XPL:

Field Name Description
XPLID Parameter list eyecatcher
XPLLEVEL Version level of $XPL parameter list
XPLXITID Exit ID number
X024IND Indicator byte: not applicable.
X024COND Condition byte indicating the type of JES2 start in

progress.

X024WARM Indicates single-system warm start.

X024HOT Indicates hot start.

X024QCK Indicates quick start.

X024ALLS Indicates all-systems warm start.

X024ESYS Indicates $E MEMBER restart.

X024COLD Indicates cold start.

X024IPL Indicates system has been IPLed.

X024COFM Indicates cold start with format in
progress.

X024RESP Response byte
X024SSIA Address of the information build area where the exit

builds the SSI information string. The caller of EXIT
24 provides this area (set to zero during a JES2 hot
start).

X024SSWL Length of the information build area (the area
pointed to by X024SSIA). The caller of Exit 24
provides this value.

2-10 Not applicable

11 Address of $HCT

12 Not applicable

13 Address of $PCE: the PCE work area is the common initialization
routine work area, mapped by the $CIRWORK macro.

14 Return address

15 Entry address

Exit 24

Exit 24: post initialization 175

Register contents when exit 24 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents

0 N/A

1 Pointer to a parameter list with the following structure, mapped by
$XPL:

XPLRESP Response byte that indicates actions taken by the
exit.

X024RSSI Indicates that the exit is providing a
string of SSI information.

X024SSIL Length of the string built by the exit. EXIT 24
provides this value.

2-13 N/A

14 Return Address

15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine. If no additional exit
routines are associated with this exit continue the normal
initialization process.

4 Tells JES2 to ignore any other exit routines associated with this exit
and to continue normal initialization processing.

8 Tells JES2 to terminate normal initialization. This results in the
HASP864 error message to the operator.

Coded example
Module HASX24A in SYS1.SHASSAMP contains a sample of Exit 24 .

Exit 24

176 z/OS V1R4.0 JES2 Installation Exits

Exit 25: JCT read

Function
This exit allows you to provide an exit routine to receive control whenever a JES2
functional subsystem address space (HASPFSSM) performs JCT I/O. That is, your
routine receives control just after the JCT is read into storage by the HASPFSSM
module which executes as part of the FSS address space.

You can use this exit to perform I/O for any installation-specific control blocks you
may have created.

Related exits
Whenever JCT I/O is performed by the JES2 main task, Exit 7 serves the purpose
of this exit, and Exit 8 is used whenever a JES2 subtask or a routine running in the
user environment performs JCT I/O.

Environment

Task
Functional subsystem (HASPFSSM). You must specify ENVIRON=FSS on the
$MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 25 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. As with every exit, you should
provide your own recovery within your exit routine. The $ESTAE facility is
inoperative within the FSS execution environment, rather the MVS ESTAE facility
must be used to provide recovery. Also note that the FSS may have recovery
routines in effect and that these depend on the FSS implementation.

Job exit mask
Exit 25 is subject to suppression. You can suppress Exit 25 by implementing exit 2
to set the 25th bit in the job exit suppression mask (JCTXMASK) or by indicating
the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $HFCT, $JCT, $JCTX ETP, FSIP

Point of processing
This exit is taken from the functional subsystem address space (HASPFSSM).

© Copyright IBM Corp. 1988, 2002 177

JES2 gives control to your exit routine after the $JCT has been read into storage,
during $JIB initialization processing in the FSMGETDS routine of HASPFSSM if the
$JCT read was successful and before initialization of the job separator page area
(IAZJSPA) with fields from the $JCT. The $JCT read belongs to the job owning the
JOE from which data set(s) will be selected for assignment to the FSA via the
functional subsystem interface (FSI) GETDS function.

JES2 can also give control to your exit routine just after the FSMGETDS routine in
HASPFSSM reads the JCT for the job owning the $JOE from which a data set will
be selected (except if cancelled on a setup request) for assignment to a functional
subsystem application (FSA).

Programming considerations
1. Be sure your exit routines reside in common storage. Do not linkedit this exit

with HASPFSSM.

2. The $SAVE and $RETURN services are available in the FSS environment.

3. The service routines provided in the HASPFSSM module may be used within
your exit routine. The cell pool services, $GETBLK and $RETBLK can be used
to acquire save areas and other predefined storage cells dynamically. You are
responsible for returning all storage cells explicitly acquired.

4. Locating JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTXGET macro. For example, you can use these extensions to
store job-related information. For more information, see z/OS JES2 Macros.

Register contents when exit 25 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 A code passed to your routine by JES2

0 Indicates that the $JCT has been read from spool
4 Indicates that the $JCT will be written to spool

1 Address of the $JCT
2-10 N/A
11 Address of the $HFCT
12 N/A
13 Address of an OS-style save area
14 Return address
15 Entry address

Register contents when exit 25 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-13 N/A
14 Return address
15 Return code

A return code of:

0 Tells JES2 that if any additional exit routines are associated with
this exit, call the next consecutive exit routine. If no other exit

Exit 25

178 z/OS V1R4.0 JES2 Installation Exits

routines are associated with this exit, continue with normal
processing, which is determined by the particular exit point from
which the exit routine was called.

4 Tells JES2 that even if there are additional exit routines associated
with this exit, ignore them; continue with normal processing, which
is determined by the particular exit point from which the exit routine
was called.

Coded example
None provided.

Exit 25

Exit 25: JCT read 179

180 z/OS V1R4.0 JES2 Installation Exits

Exit 26: termination/resource release

Function
This exit allows you to free resources obtained during previous installation exit
routine processing at any JES2 termination. At a JES2 termination (that is, $P JES2
command, JES2 initialization termination, or an abend), Exit 26 receives control to
free whatever resources your exit routines continues to hold. To control the release
of resources, this exit permits access to the termination recovery communication
area (TRCA) and the HASP communications table (HCT). With such access
available, your installation is provided sufficient flexibility to withdraw or free all
services and resources you may have previously acquired. This exit can also be
used to permit your installation to modify the termination options and edit operator
responses to those options.

Environment

Task
JES2 main task (Termination) – JES2 dispatcher disabled. You must specify
ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 26 in supervisor state and PSW key 1.

Recovery
Exit 26 is protected by an ESTAE routine. If an error occurs during Exit 26
processing in your code, the ESTAE issues message $HASP082 INSTALLATION
EXIT 26 ABEND to the operator. The ESTAE provides an SDUMP (if possible),
returns control to JES2 termination processing ($HEXIT), and proceeds with normal
termination. If this ESTAE does receive control, JES2 does not permit Exit 26 to
receive control again.

Job exit mask
This exit point is not subject to job exit mask suppression.

Mapping macros normally required
$ERA, $HASPEQU, $HCCT, $HCT, $MIT, $PCE, $TRCA

Point of processing
This exit is taken from HASPTERM during JES2 termination processing ($HEXIT).

At JES2 termination, the operator receives the message $HASP098 ENTER
TERMINATION OPTION. Following the operator response but before response
processing, this exit gains control. At this time the exit has the option to change the
operator’s reply to $HASP098. Exit processing completes, and on return from the
exit, processing continues with the scanning of the operator response to the
$HASP098 message.

© Copyright IBM Corp. 1988, 2002 181

Programming considerations
1. Be careful not to free private area storage (for example, the UCT) that might be

needed by JES2 termination services after exit 26 processing. PCE tables and
DTE tables, and so forth, may refer to UCT fields and might be needed later by
HASPTERM.

2. The $CADDR (JES2 common storage address table) might not be available
when Exit 26 is invoked.

Register contents when exit 26 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 A code passed to your routine by JES2

0 Indicates that Exit 26 is invoked for the first time
4 Indicates that Exit 26 is invoked for other than the

first time
1 Address of the JES2 main task $TRCA
2-10 Not applicable
11 Address of the $HCT
12 N/A
13 Address of the HASPTERM $PCE
14 Return address
15 Entry address

Register contents when exit 26 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0 A code passed to your routine by JES2

0 Indicates that Exit 26 is invoked for the first time
4 Indicates that Exit 26 is invoked for other than the

first time
1 Address of the JES2 main task TRCA
2-10 Not applicable
11 Address of the $HCT
12 Not applicable
13 Address of the HASPTERM $PCE – (this is a special PCE located

n HASPTERM)
14 Return address
15 Return code

A return code:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no other exit routines
are associated with this exit, continue with normal processing,
which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if there are additional exit routines associated
with this exit, ignore them; continue with normal processing, which
is determined by the particular exit point from which the exit routine
was called.

Exit 26

182 z/OS V1R4.0 JES2 Installation Exits

Coded example
None provided.

Exit 26

Exit 26: termination/resource release 183

184 z/OS V1R4.0 JES2 Installation Exits

Exit 27: PCE attach/detach

Function
This exit allows resources to be allocated and deallocated. The exit also allows you
to deny a PCE attach.

Environment

Task
JES2 main task. You must specify this task on the ENVIRON specification of the
$MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 27 in supervisor state and PSW key 1.

Recovery
$ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
This exit point is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCT, $MIT, $PCE

Point of processing
This exit is taken from HASPDYN either immediately after a PCE has been
attached or immediately before a PCE is detached.

Programming considerations
None.

Register contents when exit 27 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 A code passed to your routine by JES2
0 Indicates that Exit 27 is invoked after a PCE attach
4 Indicates that Exit 27 is invoked before a PCE is

detached

© Copyright IBM Corp. 1988, 2002 185

1 Pointer to a 1-word parameter list that contains the address of the
PCE to be processed.

2-10 N/A

11 Address of the HCT

12 N/A

13 Address of the PCE currently in control

14 The return address

15 The entry address

Register contents when exit 27 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents

0-13 Unchanged

14 Return address

15 Return code

A return code of:

0 Tells JES2 that if there are additional exit routines associated with
this exit, call the next consecutive exit routine. If there are no other
exit routines associated with this exit, continue with normal
processing, which is determined by the particular exit point from
which the exit routine was called.

4 Tells JES2 that even if there are additional exit routines associated
with this exit, ignore them; continue with normal processing, which
is determined by the particular exit point from which the exit routine
was called.

8 Tells JES2 to detach the PCE that was attached immediately prior
to invoking this exit.

Coded example
Module HASX27A in SYS1.SHASSAMP contains a sample of Exit 27.

Exit 27

186 z/OS V1R4.0 JES2 Installation Exits

Exit 28: subsystem interface (SSI) job termination

Function
This exit allows you to free resources (for example, storage for installation control
blocks) that were obtained during Exit 32 (SSI Job Selection) processing. You can
also use this exit (by changing the response byte) to either suppress the JES2 job
termination-related message or replace them with your own installation-defined
messages.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 28 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
Exit 28 is subject to suppression. You can suppress Exit 28 by either implementing
exit 2 to set the 28th bit in the job exit suppression mask (JCTXMASK) or by
indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $HCCT, $JCT, $JCTX, $MIT, $SJB

Point of processing
This exit is taken from HASCJBST prior to the freeing of job-related control blocks
and the issuing of related messages.

Programming considerations
Changes of security information in the $JCT could cause a later security validation
to fail. These changes could also be a violation of your installation’s security policy.

Expanding the JCT control block
You can add, expand, locate, and remove extensions to the job control table ($JCT)
control block from this exit using the $JCTX macro extension service. For example,
you can use these extensions to store job-related information. For more information,
see z/OS JES2 Macros.

© Copyright IBM Corp. 1988, 2002 187

Register contents when exit 28 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 0

1 Pointer to a 12-byte parameter list with the following structure:

Byte 1 (+0) A type-of-processing caller indicator, as follows:

0 job termination (JOB, STC, TSU, or
XBM)

4 SYSLOG termination (return ID)

8 joblet termination

12 unsuccessful job selection (JOB,
STC, TSU unable to obtain
resources)

16 unsuccessful request ID JOB
(request ID unable to obtain
resources)

20 unsuccessful joblet selection
(unable to obtain resources)

24 unsuccessful job restart (JOB
RENQ unable to obtain resources)

Byte 2 (+1) This byte is not part of the interface

Byte 3 (+2) Response byte

Bits 0-6 These bits are not part of the
interface

Bit 7 0 – indicates that JES2 will issue
job termination message (default)

1 – indicates that JES2 will
suppress job termination
message

Byte 4 (+3) This byte is not part of the interface

Byte 5 (+4) Address of SJB or 0

Byte 9 (+8) Address of JCT or 0

2-10 Not applicable

11 Address of the $HCCT

12 Not applicable

13 Address of an available save area

14 Return address

15 Entry address

Register contents when exit 28 passes control back to JES2
Upon return from this exit, the register contents must be:

Exit 28

188 z/OS V1R4.0 JES2 Installation Exits

Register Contents
0-13 Unchanged
14 Return address
15 Return code

A return code of:

0 Tells JES2 that if there are additional exit routines associated with
this exit, call the next consecutive exit routine. If there are no other
exit routines associated with this exit, continue with normal
processing, which is determined by the particular exit point from
which the exit routine was called.

4 Tells JES2 that even if there are additional exit routines associated
with this exit, ignore them; continue with normal processing, which
is determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASXJEA in SYS1.SHASSAMP contains a sample of Exit 28.

Exit 28

Exit 28: subsystem interface (SSI) job termination 189

190 z/OS V1R4.0 JES2 Installation Exits

Exit 29: subsystem interface (SSI) end-of-memory

Function
This exit allows you to free resources in common storage (for example, installation
control blocks that were obtained during Exit 32, SSI Job Selection, processing).

You can also use this exit to free resources on an address space level. Because
this exit executes in the master scheduler address space, it can only process
CSA-resident items.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 29 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
This exit point is not subject to job exit mask suppression.

Mapping macros normally required
$HASB, $HASPEQU, $HCCT, $MIT, $SJB

Point of processing
This exit is taken from HASCJBTR prior to the freeing of CSA job-related control
blocks.

Programming considerations
None.

Register contents when exit 29 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 Not applicable
1 Pointer to an 8-byte parameter list with the following structure:

Byte 1 (+0) This byte is not part of the interface

© Copyright IBM Corp. 1988, 2002 191

Byte 2 (+1) Condition byte
Bits 0-6 These bits are not part of the

interface
Bit 7 0 – normal end-of-memory

1 – abnormal end-of-memory
Byte 3 (+2) This byte is not part of the interface
Byte 4 (+3) This byte is not part of the interface
Byte 5 (+4) This byte is not part of the interface
Byte 6 (+5) This byte is not part of the interface
Byte 7 (+6) Address space ID

2-10 Not applicable
11 Address of $HCCT
12 Not applicable
13 Address of an available save area
14 Return address
15 Entry address

Register contents when exit 29 passes control back to JES2
Register Contents
0-13 Unchanged
14 Return address
15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no other exit routines
are associated with this exit, continue with normal processing,
which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASX29A in SYS1.SHASSAMP contains a sample of Exit 29.

Exit 29

192 z/OS V1R4.0 JES2 Installation Exits

Exit 30: subsystem interface (SSI) data set OPEN and
RESTART

Function
This exit allows you to get control during OPEN and RESTART processing of
subsystem interface data sets. An indicator (passed to the exit in register 0)
indicates either OPEN or RESTART processing; therefore, this exit can be used for
either situation. Further, an indicator (passed in the parameter list pointed to by
register 1) indicates the type of data set (SYSIN, SYSOUT, process SYSOUT,
SPOOL BROWSE, or an internal reader type).

You can examine the data set characteristics and check them for validity, proper
authority, or alter them.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 30 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect.

However, as with every exit, your exit routine should not depend on JES2 for
recovery. JES2 cannot anticipate the exact purpose of your exit routine and can
therefore provide no more than minimal recovery. Your exit routine should provide
its own recovery.

Job exit mask
Exit 30 is subject to suppression. You can suppress Exit 30 either by implementing
exit 2 to set the 30th bit in the job exit suppression mask (JCTXMASK) or by
including a statement in the initialization stream that disables Exit 30.

Mapping macros normally required
$HASPEQU, $HCCT, $IOT, $MIT, $PDDB, $SJB, DEB, JFCB

Point of processing
This exit is taken from HASCDSOC after the data set has been either OPENed or
RESTARTed.

Programming considerations
1. Expanding the JCT Control Block

© Copyright IBM Corp. 1988, 2002 193

If the address of the $JCT is contained in field SJB, you can add, expand, locate, or
remove extensions to the job control table ($JCT) control block from this exit using
the $JCTX macro extension service. For example, you can use these extensions to
store job-related information. For more information, see z/OS JES2 Macros.

Register contents when exit 30 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 Type of call indication

0 OPEN
4 RESTART

1 Pointer to an 28-byte parameter list with the following structure:
Byte 1 (+0) Type of data set being processed

0 JOB internal reader
4 STC internal reader
8 TSU internal reader
12 SYSIN data set
16 SYSOUT data set
20 PROCESS SYSOUT or SYSOUT

application program interface
(SAPI) data set

24 SPOOL BROWSE data set
28 Unknown data set type

Byte 2 (+1) Condition byte
Bits 0-4 These bits are not part of the

interface.
Bit 5 0 – user authorization successful

1 – user authorization failed
Bit 6 0 – no error encountered

1 – error encountered
Bit 7 (applicable to dataset OPEN for

STC and TSU internal readers only)
0 – $P JES2 not in progress
1 – $P JES2 in progress

Byte 3 (+2) Response byte
bits 0-5 These bits are not part of the

interface.
bit 6 0 – open/restart the data set or

reader. Default is 0 unless the data
set type is unknown or if an error
occurred while attempting to open
the data set.
1 – fail the OPEN/RESTART
processing

bit 7 0 – suppress unknown data set
message ($HASP352). Zero is the
default for this bit unless the type of
data set is unknown.
1 – issue the unknown dataset
message ($HASP352)

Byte 4 (+3) This byte is not part of the interface.
Byte 5 (+4) Address of DCT if internal reader data set (type 0,

4, 8 in byte 1 of parameter list)
Address of SDB if SYSIN, SYSOUT, PROCESS

Exit 30

194 z/OS V1R4.0 JES2 Installation Exits

SYSOUT, or SPOOL BROWSE data set (type 12,
16, 20, or 24 in byte 1 of parameter list)
0 if unknown data set file (type 28 in byte 1 of
parameter list)

Byte 9 (+8) Address of SJB or 0
Byte 13 (+12) Address of JFCB
Byte 17 (+16) Address of DEB
Byte 21 (+20) 0 if internal reader data set (type 0, 4, 8 in byte 1 of

parameter list) or if bits 6 and 7 of byte 2 (condition
byte) are not 0
Address of PDDB if SYSIN, SYSOUT, PROCESS
SYSOUT, or SPOOL BROWSE data set (type 12,
16, 20, or 24 in byte 1 of parameter list)

Byte 25 (+24) 0 if internal reader data set (type 0, 4, 8 in byte 1 of
parameter list) or if bits 6 and 7 of byte 2 (condition
byte) are not 0
Address of IOT if SYSIN, SYSOUT, PROCESS
SYSOUT, or SPOOL BROWSE data set (type 12,
16, 20, or 24 in byte 1 of parameter list)

2-10 Not applicable
11 Address of HCCT
12 Not applicable
13 Address of an available save area
14 Return address
15 Entry address

Register contents when exit 30 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-13 Unchanged
14 Return address
15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no other exit routines
are associated with this exit, continue with normal processing,
which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASXOCA in SYS1.SHASSAMP contains a sample of Exit 30.

Exit 30

Exit 30: subsystem interface (SSI) data set OPEN and RESTART 195

196 z/OS V1R4.0 JES2 Installation Exits

Exit 31: subsystem interface (SSI) allocation

Function
This exit allows you to receive control during allocation of subsystem interface data
sets and internal readers. During allocation processing, JES2 can affect subsystem
data set characteristics. This exit allows an installation to control how JES2 will
process installation-specified statements and parameters during this processing
phase.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 31 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery.

Job exit mask
Exit 31 is subject to suppression. You can suppress Exit 31 either by implementing
exit 2 to set the 31st bit in the job exit suppression mask (JCTXMASK) or by
indicating Exit 31 is disabled in the initialization stream.

Mapping macros normally required
$HASPEQU, $HCCT, $IOT, $MIT, $PDDB, $SJB, JFCB

Point of processing
This exit is taken from HASCDSAL after allocation processing but prior to return to
the SSI caller.

Programming considerations
The following are programming considerations for Exit 31.

1. You can determine whether Exit 31 was invoked on behalf of a transaction
program or batch job by either:
v Determining if flag SJBFLGA is set to SJBATP
v Determining if the IOT contains a DSCT

2. Expanding the JCT Control Block

If the address of the $JCT is contained in field SJBJCT, you can add, expand,
locate, or remove extensions to the job control table ($JCT) control block from

© Copyright IBM Corp. 1988, 2002 197

this exit using the $JCTX macro extension service. For example, you can use
these extensions to store job-related information. For more information, see
z/OS JES2 Macros.

Register contents when exit 31 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 0
1 Pointer to a 24-byte parameter list with the following structure:

Byte 1 (+0) Type of data set being processed
0 Internal reader
4 JESNEWS data set
8 SYSIN data set
12 SYSOUT data set
16 PROCESS SYSOUT or SYSOUT

application program interface
(SAPI) data set

20 SPOOL BROWSE data set
24 Unknown data set type

Byte 2 (+1) Condition byte
bits 0-6 These bits are not part of the

interface
bit 7 0 – no error encountered

1 – error occurred during allocation
processing

Byte 3 (+2) Response byte
bits 0-6 These bits are not part of the

interface
bit 7 0 – continue allocation request

(default if bit 7 of byte 2 =0)
1 – fail allocation request (default if
bit 7 of byte 2 =1)

Byte 4 (+3) This byte is not part of the interface
Byte 5 (+4) Address of DCT if internal reader data set (0 in byte

1 of parameter list)

Address of SDB if data set (4, 8, 12, 16, or 20
in byte 1 of parameter list)

0 if unknown data set type
(24 in byte 1 of parameter list)

Byte 9 (+8) Address of SJB or 0. This value is 0:

v If error in obtaining SJB address,

v If data set is a started task or TSO/E internal
reader, or

v When the automatic restart manager allocates an
internal reader.

Byte 13 (+12) Address of JFCB
Byte 17 (+16) Address of PDDB or 0
Byte 21 (+20) Address of IOT or 0

2-10 N/A
11 Address of HCCT
12 N/A
13 Address of an available save area

Exit 31

198 z/OS V1R4.0 JES2 Installation Exits

14 The return address
15 The entry address

Register contents when exit 31 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-13 Unchanged
14 Return address
15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no other exit routines
are associated with this exit, continue with normal processing,
which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASX31A in SYS1.SHASSAMP contains a sample Exit 31.

Exit 31

Exit 31: subsystem interface (SSI) allocation 199

200 z/OS V1R4.0 JES2 Installation Exits

Exit 32: subsystem interface (SSI) job selection

Function
This exit allows you to receive control during job selection processing. You can
perform job-related processing such as allocating resources and I/O for
installation-defined control blocks. Also, this exit can be used to suppress job
selection related messages and replace them with installation-defined messages.
Such messages can indicate, for example, that a job is “not to be selected for
execution” and “the initiators were terminated”.

Related exits
Use Exit 28 (SSI Job Termination) and Exit 29 (SSI End-of-Memory) with Exit 32 to
perform job termination processing.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places Exit 32 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
Exit 32 is subject to suppression. You can suppress Exit 32 by either implementing
exit 2 to set the 32nd bit in the job exit suppression mask (JCTXMASK) or by
indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $HCCT, $JCT, $JCTX, $MIT, $SJB

Point of processing
This exit is taken from HASCJBST following job selection but prior to the issuing of
the $HASP373 JOBID $HASP373 jobname STARTED message.

Programming considerations
1. Expanding the JCT Control Block

© Copyright IBM Corp. 1988, 2002 201

You can add, expand, locate, or remove extensions to the job control table
($JCT) control block from this exit using the $JCTX macro extension service.
For example, you can use these extensions to store job-related information. For
more information, see z/OS JES2 Macros.

Register contents when exit 32 gets control
0 0
1 Pointer to an 12-byte parameter list with the following structure:

Byte 1 (+0) Type of processing indicator
0 Reserved
4 Request for job by SYSLOG ID
8 Request for job by class
12 TSU
16 STC

Byte 2 (+1) Condition byte
bits 0-6 These bits are not part of the

interface
bit 7 0 – no error occurred during

processing (job selectable for
execution)

)
1 – error occurred during job select
processing (job is to be restarted or
terminated)

Byte 3 (+2) Response byte
bits 0-3 These bits are not part of the

interface
bit 4 0 – initiator is not abnormally ended

(default)
1 – initiator is abnormally ended,
then restarted automatically.

bit 5 0 – initiator is not abnormally ended
(default)
1 – initiator is abnormally ended

Notes:

1. If you specify both bits 4 and 5,
the initiator is not automatically
ended and drained.

2. The initiator will stop after the
job currently being processed
has been terminated/queued for
RESTART.

3. This bit is ignored unless the
type of processing is a job
request by class (R1, byte 1 =
8)

bit 6 0 – select this job (default)
1 – terminate this job

Note: This bit is ignored if the
condition byte (byte 2) is
nonzero

Exit 32

202 z/OS V1R4.0 JES2 Installation Exits

bit 7 0 – issue the JES2 job selection
($HASP373) message
1 – suppress the JES2 job
selection ($HASP373) message

Note: This bit is ignored if the
condition byte (byte 2) is
nonzero

Byte 4 (+3) This byte is not part of the interface
Byte 5 (+4) Address of SJB
Byte 9 (+8) Address of JCT or 0

2-10 N/A
11 Address of HCCT
12 N/A
13 Address of an available save area
14 Return address
15 Entry address

Register contents when exit 32 passes control back to JES2
0-13 Unchanged
14 Return address
15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no other exit routines
are associated with this exit, continue with normal processing,
which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASX32A in SYS1.SHASSAMP contains a sample of Exit 32.

Exit 32

Exit 32: subsystem interface (SSI) job selection 203

204 z/OS V1R4.0 JES2 Installation Exits

Exit 33: subsystem interface (SSI) data set CLOSE

Function
This exit allows you to receive control during subsystem data set CLOSE
processing. You can examine the data set characteristics and check them for
validity, authority, or alter the characteristics. An indicator, passed to this exit in the
parameter list pointed to by register 1, indicates the type of data set.

Related exits
Use Exit 30 (SSI Data Set OPEN and RESTART) in conjunction with Exit 33 to
perform required data set OPEN and RESTART processing.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 33 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
Exit 33 is subject to suppression. You can suppress Exit 33 by setting the 33rd bit
in the job exit suppression mask (JCTXMASK) or by indicating Exit 33 is disabled in
the initialization stream .

Mapping macros nNormally required
$DCT, $HASPEQU, $HCCT, $IOT, $MIT, $PDDB, $SDB, $SJB, DEB, JFCB

Point of processing
This exit is taken from HASCDSOC prior to the CLOSE of the subsystem data set.

Programming considerations
1. Expanding the JCT Control Block

© Copyright IBM Corp. 1988, 2002 205

If the address of the $JCT is contained in field SJBJCT, you can add, expand,
locate, or remove extensions to the job control table ($JCT) control block from this
exit using the $JCTX macro extension service. For example, you can use these
extensions to store job-related information. For more information, see z/OS JES2
Macros.

Register contents when exit 33 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 N/A
1 Pointer to a 25-byte parameter list with the following structure:

Byte 1 (+0) Type of data set indicator
0 JOB internal reader
4 STC internal reader
8 TSU internal reader
12 SYSIN data set
16 SYSOUT data set
20 PROCESS SYSOUT data set
24 SPOOL BROWSE data set
28 Unknown data set type

Byte 2 (+1) Condition byte
bits 0-6 These bits are not part of the

interface
bit 7 0 – no error occurred during

CLOSE processing
1 – error occurred during CLOSE
processing

Byte 3 (+2) Response byte
bits 0-5 These bits are not part of the

interface
bit 6 0 – CLOSE the data set or internal

reader (default, unless data set
type unknown, byte 1 = 28)
1 – fail CLOSE processing

bit 7 0 – suppress the JES2 unknown
data set type ($HASP353) message
(default, unless data set type
unknown, byte 1 = 28)
1 – issue the JES2 unknown data
set type ($HASP353) message

Byte 4 (+3) This byte is not part of the interface
Byte 5 (+4) Address of DCT if data set type is internal reader

(byte 1 = 0, 4, or 8)
Address of SDB if data set type is SYSIN,
SYSOUT, PROCESS SYSOUT, SPOOL BROWSE,
or unknown data set (byte 1 = 12, 16, 20, 24, or
28) or 0

Byte 9 (+8) Address of SJB or 0
Byte 13 (+12) Address of JFCB
Byte 17 (+16) Address of DEB
Byte 21 (+20) 0 if data set type is internal reader (byte 1 = 0, 4, or

8) or if byte 2 is nonzero
Address of PDDB if data set type is SYSIN,

Exit 33

206 z/OS V1R4.0 JES2 Installation Exits

SYSOUT, PROCESS SYSOUT, SPOOL BROWSE
data set, or unknown (byte 1 = 12, 16, 20, 24, or
28)

Byte 25 (+24) 0 if data set type is internal reader (byte 1 = 0, 4, or
8) or if bit 7 of byte 2 is nonzero
Address of IOT if data set type is SYSIN, SYSOUT,
PROCESS SYSOUT, SPOOL BROWSE data set,
or unknown (byte 1 = 12, 16, 20, 24, 28)

2-10 N/A
11 Address of HCCT
12 N/A
13 Address of an available save area
14 The return address
15 The entry address

Register contents when exit 33 passes back control to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-13 Unchanged
14 Return address
15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no other exit routines
are associated with this exit, continue with normal processing,
which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASXOCA in SYS1.SHASSAMP contains a sample of Exit 33.

Exit 33

Exit 33: subsystem interface (SSI) data set CLOSE 207

208 z/OS V1R4.0 JES2 Installation Exits

Exit 34: subsystem interface (SSI) data set unallocation

Function
This exit allows you to receive control during unallocation processing of subsystem
interface data sets and internal readers.

Related exits
Use Exit 34 in conjunction with Exit 31 (SSI Data Set Allocation) to perform required
data set unallocation processing.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 34 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
Exit 34 is subject to suppression. You can suppress Exit 34 by either implementing
exit 2 to set the 34th bit in the job exit suppression mask (JCTXMASK) or by
indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$DCT, $HASPEQU, $HCCT, $IOT, $MIT, $PDDB, $SDB, $SJB, JFCB

Point of processing
This exit is taken from HASCDSAL prior to the processing to unallocate the data
set.

Programming considerations
When this exit routine returns control to JES2, JES2 updates certain characteristics
of the data set being allocated with information in the SSOB extension, eliminating
any changes you might have made to the PDDB in this exit. To have a permanent
effect, you should make any changes to the data set characteristics in the SSOB
extensions.

1. Expanding the JCT Control Block

© Copyright IBM Corp. 1988, 2002 209

If the address of the $JCT is contained in field SJBJCT, you can add, expand,
locate, or remove extensions to the job control table ($JCT) control block from this
exit using the $JCTX macro extension service. For example, you can use these
extensions to store job-related information. For more information, see z/OS JES2
Macros.

Register contents when exit 34 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 0
1 Pointer to a 24-byte parameter list with the following structure:

Byte 1 (+0) Type of data set indicator
0 Internal reader
4 JESNEWS data set
8 SYSIN data set
12 SYSOUT data set
16 PROCESS SYSOUT or SYSOUT

application program interface
(SAPI) data set

20 SPOOL BROWSE data set
24 Unknown data set type

Byte 2 (+1) Condition byte
bits 0-5 These bits are not part of the

interface
bit 6 0 – no error occurred during

allocation processing
1 – error occurred during allocation
processing

bit 7 0 – no error occurred during
unallocation processing
1 – error occurred during
unallocation processing

Byte 3 (+2) This byte is not part of the interface
Byte 4 (+3) This byte is not part of the interface
Byte 5 (+4) Address of DCT if data set type is internal reader

(byte 1 = 0)
SDB – if data set type is SYSIN, SYSOUT,
PROCESS SYSOUT, or SPOOL BROWSE data set
(byte 1 = 8, 12, 16, or 20)
0 – if unknown data set type (byte 1 = 24)

Byte 9 (+8) Address of SJB or 0. This value is 0:

v If error in obtaining SJB address,

v If data set is a started task or TSO/E internal
reader, or

v When the automatic restart manager unallocates
an internal reader.

Byte 13 (+12) Address of JFCB
Byte 17 (+16) Address of PDDB

0 – if data set type is a regular internal reader or
unknown data set type (byte 1 = 0 or 24)

Byte 21 (+20) Address of IOT
0 – if data set type is a regular internal reader or
unknown data set type (byte 1 = 0 or 24)

2-10 N/A

Exit 34

210 z/OS V1R4.0 JES2 Installation Exits

11 Address of HCCT
12 N/A
13 Address of an available save area
14 The return address
15 The entry address

Register contents when exit 34 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-13 Unchanged
14 Return address
15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no other exit routines
are associated with this exit, continue with normal processing,
which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASX34A in SYS1.SHASSAMP contains a sample of Exit 34.

Exit 34

Exit 34: subsystem interface (SSI) data set unallocation 211

212 z/OS V1R4.0 JES2 Installation Exits

Exit 35: subsystem interface (SSI) end-of-task

Function
This exit allows you to free resources at the task level during end-of-task
processing.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 35 in supervisor state and PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
This exit point is not subject to job exit mask suppression.

Mapping macros normally required
$HASB, $HASPEQU, $HCCT, $MIT, $SJB

Point of processing
This exit is taken from HASCJBTR after JES2 has located and locked the SJB
(subsystem job block).

Programming considerations
1. Expanding the JCT Control Block

If the address of the $JCT is contained in field SJBJCT, you can add, expand,
locate, or remove extensions to the job control table ($JCT) control block from this
exit using the $JCTX macro extension service. For example, you can use these
extensions to store job-related information. For more information, see z/OS JES2
Macros.

Register contents when exit 35 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 0

© Copyright IBM Corp. 1988, 2002 213

1 Pointer to a 20-byte parameter list with the following structure:

Byte 1 (+0) This byte is not part of the interface

Byte 2 (+1) Condition byte

bits 0-6 These bits are not part of the
interface

bit 7 0 – task ended normally

1 – task ended abnormally

Byte 3 (+2) This byte is not part of the interface

Byte 4 (+3) This byte is not part of the interface

Byte 5 (+4) This byte is not part of the interface

Byte 6 (+5) This byte is not part of the interface

Byte 7 (+6) Address space ID

Byte 11 (+8) Address of SJB

Byte 13 (+12) Address of primary IOT or 0

Byte 17 (+16) Address of JCT or 0

2-10 N/A

11 Address of HCCT

12 N/A

13 Address of an available save area

14 The return address

15 The entry address

Register contents when exit 35 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-13 Unchanged
14 Return address
15 Return code

A return code:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no other exit routines
are associated with this exit, continue with normal processing,
which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASXJEA in SYS1.SHASSAMP contains a sample of Exit 35.

Exit 35

214 z/OS V1R4.0 JES2 Installation Exits

Exit 36: pre-security authorization call

Function
This exit allows you to modify information passed to the security authorization
facility (SAF) of MVS. $SEAS invokes this exit just prior to passing control to SAF.
You can:

v Bypass the default SAF call and perform your own security checking.

v Do additional security checking besides what SAF provides.

v Pass your own return and reason code to the invoker in place of the standard
SAF return code.

v Pass information from JES2 to the security subsystem.

v Disable specific SAF security checking.

Environment

Task
USER environment. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 36 in supervisor state and PSW key 0.

Recovery
Recovery for this exit depends on the environment that invokes the exit:

Main task If general purpose subtasks are attached then the subtask ESTAE
is in effect. If no general purpose subtasks are attached and you
specified UNCOND=YES, then the $SUBIT $ESTAE is in effect.

FSS ESTAE recovery is in effect.

USER JES2 fails the request and SSI $ESTAE recovery is in effect.

However, as with every exit, your exit routine should not depend on JES2 for
recovery. JES2 cannot anticipate the exact purpose of your exit routine and can
therefore provide no more than minimal recovery. Your exit routine should provide
its own recovery.

Job exit mask
Table 7 on page 218 shows which function codes are subject to job mask
suppression. (See the register one byte that is mapped by X036IND in “Register
Contents when Exit 36 Gets Control”.)

Mapping macros normally required
$HASPEQU, $HCCT, $WAVE, $XPL

© Copyright IBM Corp. 1988, 2002 215

Point of processing
JES2 takes this exit prior to issuing the SAF call.

Programming considerations
v Use care when changing or restricting the functions that build, obtain, or extract

information for tokens because you could cause later SAF calls to fail.

v If you need a finer level of control you will have to build more specific entity
names in this exit. For example, if you want only certain operators to change the
routing of a printer:

– Define a more specific profile to RACF. For example, if you wanted to keep
operators from changing the routing of jobs on JESC, you would define a
profile named:

JESC.MODIFY.JOBOUT.ROUTE

with only the operators you want to issue the command on the list of userids
authorized to the command.

– Intercept the command authorization call in Exit 36.

– In Exit 36, scan the command and build the required profile name. The
address of the command and the profile JES2 is requesting authorization for
is in the $WAVE.

– Replace the entity name (profile name) pointed to by the $WAVE with the
more specific entity name.

v Locating Extensions to the JCT Control Block : You can use the $JCTXGET
macro to locate extensions to the job control table ($JCT) control block from this
exit.

v If you include code (such as a branch table) based on the security function codes
presented in Table 7 on page 218 be certain you also refer to the source of these
function codes contained in macro $HASPEQU for their current and complete
listing.

v If you need to pass information from JES2 to the security subsystem, move the
JCT pointer from the $SAFINFO parameter list (SFIJCT) to the SAF parameter
list (ICHSAFP) in field SAFPUSRW to access the SAF router exit.

Register contents when exit 36 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 N/A

1 Pointer to a parameter list with the following structure, mapped by
$XPL:

Note: Refer to z/OS JES2 Data Areas, Vol 3 $PADDR-$XRQ for
the complete mapping of the exit parameter list ($XPL)
fields, their offsets, and their values when this exit gets
control.

Field Name Description

XPLID The eyecatcher

XPLLEVEL The version level of $XPL

Exit 36

216 z/OS V1R4.0 JES2 Installation Exits

XPLXITID The exit ID number

X036IND Indicator byte that contains the function code (value
of FUNCODE=) passed by $SEAS. Refer to Table 7
on page 218 for these function codes and their
meanings.

X036COND Condition byte showing the type of code that
invoked the exit.
X036JES2 IBM-supplied code (CODER=JES2

on $SEAS).
X036USER Customer-written code

(CODER=USER on $SEAS).
X036RESP Response byte you set to have the following

meanings:
X036NORC Setting this bit on in the response

byte indicates that the exit-specified
return and reason codes will be
used. Otherwise, the SAF return
code and reason code will be used.

Note: If you set this bit to a 1, you
must make sure SAF will
recognize any changes you
make.

X036BYPS If this bit is turned on, the call to
SAF is bypassed. Otherwise, the
authorization request is passed to
SAF.

X036PARM Address of the parameter list, in the Work Access
Verification Element ($WAVE), to pass to SAF. This
address allows you to alter any parameters
contained in the parameter list. However, do not
change the address in this fullword field as SAF will
not get the expected parameters.

X036WAVE Address of the $WAVE. This address allows you to
alter any information contained in the $WAVE.
However, do not change the address in this fullword
field because you might not point to a valid $WAVE.

X036RCBN 4-character identifier of related control block.
X036RCBA Address of related control block. If a control block is

not related with this request, the address is zero.
X036RETC Fullword return code from exit routine. The exit

passes the return code you set here to the caller in
place of the SAF return code if X036NORC is a 1.

X036RSNC Fullword reason code from exit routine. The exit
passes the reason code you set here to the caller
in place of the SAF reason code if X036NORC is a
1.

X036SIZE Size of parameter list for Exit 36

2-10 N/A

11 Address of HCCT

12 N/A

13 Address of an available save area.

14 Return address

Exit 36

Exit 36: pre-security authorization call 217

15 Entry address

Table 7. Security Function Codes

Function Code

Decimal
Value

Symbolic Name Meaning Related
Control
Block*

Job Masking

0 $SEANJES Reserved for user code. No

1 $SEAINIT Initialize security environment. SFI Yes

2 $SEAVERC Security environment create. JCT Yes

3 $SEAVERD Security environment delete. JCT Yes

4 $SEAXTRT Extract security information for this
environment.

SJB **

5 $SEASIC SYSIN data set create. IOT Yes

6 $SEASOC SYSOUT data set create. IOT Yes

7 $SEASIP SYSIN data set open. SDB Yes

8 $SEASOP SYSOUT data set open. SDB Yes

9 $SEAPSO Process SYSOUT data set open. SDB Yes

10 $SEAPSS Process SYSOUT data set select. PSO No

11 $SEATCAN TSO/E cancel. JCT No

12 $SEACMD Command authorization. None No

13 $SEAPRT Printer data set select. PDDB Yes

14 $SEADEL Data set purge. IOT **

15 $SEANUSE Notify user token extract None No

16 $SEATBLD Token build. SFI Yes

17 $SEARJES RJE signon, NJE source for command
authorization.

SWEL No

18 $SEADEVA Device authorization. PCE **

19 $SEANJEA NJE SYSOUT data set create. SFI Yes

20 $SEAREXT Re-verify token extract. JCT Yes

21 --- Reserved None

22 $SEANEWS Update of JESNEWS. SJB No

23 $SEANWBL Build JESNEWS token. IOT No

24 $SEAVERS Subtask to create access control
environment element (ACEE) for general

subtasks.

None No

25 $SEAAUD Audit for job in error. None No

26 $SEADCHK Authorization for $DESTCHK. DCW No

27 $SEATSOC SYSOUT data set create for trace. IOT No

28 $SEASSOC SYSOUT data set create for system job
data sets (for example, JOBLOG).

SFI Yes

29 $SEANSOC SYSOUT data set create for JESNEWS. IOT Yes

30 $SEASOX Transmit or offload of SYSOUT. PCE Yes

31 $SEANJEV VERIFYX for receive or reload of
SYSOUT.

SFI Yes

Exit 36

218 z/OS V1R4.0 JES2 Installation Exits

Table 7. Security Function Codes (continued)

Function Code

Decimal
Value

Symbolic Name Meaning Related
Control
Block*

Job Masking

32 $SEAJOX Transmit or offload of job. PCE Yes

33 --- Reserved None

34 $SEASPBO Spool browse data set open SDB Yes

35 $SEASFS Scheduler service, TOKNXTR SSW No

36 $SEASSWM SWM modify ALTER AUTH None No

37 $SEASAPI SYSOUT application programming
interface

None No

38-255 --- Not currently in use. Not in use.

Notes:

1. * Your exit routine should always check for the presence of the control block
before using fields in the control block. Currently, the control block is not present
when the $SEAXTRT function occurs during an open of TSU or STC internal
readers.

2. ** Job exit mask suppression not in effect during selected processing.

Register contents when exit 36 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-13 N/A
14 Return address
15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no other exit routines
are associated with this exit, continue with normal processing,
which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASX36A in SYS1.SHASSAMP contains a sample of Exit 36.

Exit 36

Exit 36: pre-security authorization call 219

220 z/OS V1R4.0 JES2 Installation Exits

Exit 37: Post-security authorization call

Function
This exit allows you to examine and/or modify return codes from the security
authorization facility (SAF) of MVS. JES2 invokes this exit just prior to returning
control to $SEAS. You can also perform additional security checking or other action
based on the return code received. For example, you can:
v Notify the operator of the status of a request.
v Request confirmation of a request from the operator before continuing.
v Further restrict the criteria used to allow (or disallow) access.
v Call $SEAS again with new information.

Environment

Task
USER environment. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 37 in supervisor state and PSW key 0.

Recovery
Recovery for this exit depends on the environment that invokes the exit:

Main task If general purpose subtasks are attached then the subtask ESTAE
is in effect. If no general purpose subtasks are attached and you
specified UNCOND=YES, then the $SUBIT $ESTAE is in effect.

FSS ESTAE recovery is in effect.

USER JES2 fails the request and SSI $ESTAE recovery is in effect.

However, as with every exit, your exit routine should not depend on JES2 for
recovery. JES2 cannot anticipate the exact purpose of your exit routine and can
therefore provide no more than minimal recovery. Your exit routine should provide
its own recovery.

Job exit mask
Exit 37 is subject to job exit mask suppression for function codes 5, 6, 7, 8, 9, 14,
and 19. Table 8 on page 223 shows which function codes are subject to job mask
suppression. (See Byte 8 of 1 in “Register Contents when Exit 37 Gets Control”).

Mapping macros normally required
$HASPEQU, $HCCT, $WAVE, $XPL

Point of processing
This exit is taken from HASCSRIC after returning from the SAF call.

© Copyright IBM Corp. 1988, 2002 221

Programming considerations
v Use care when changing or restricting the functions that build, obtain, or extract

information for tokens because you could cause later SAF calls to fail.

v Locating Extensions to the JCT Control Block : You can use the $JCTXGET
macro to locate extensions to the job control table ($JCT) control block from this
exit.

v If you include code (such as a branch table) based on the security function codes
presented in Table 8 on page 223 be certain you also refer to the source of these
function codes contained in macro $HASPEQU for their current and complete
listing.

Register contents when exit 37 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 N/A
1 Pointer to a parameter list with the following structure, mapped by

$XPL:

Note: Refer to z/OS JES2 Data Areas, Vol 3 $PADDR-$XRQ for
the complete mapping of the exit parameter list ($XPL)
fields, their offsets, and their values when this exit gets
control.

Field Name Description
XPLID The eyecatcher
XPLLEVEL The version level of $XPL
XPLXITID The exit ID number
X037IND Indicator byte that contains the function code

(value of FUNCODE=) passed by $SEAS.
Refer to Table 8 on page 223 for these
function codes and their meanings.

X037COND Condition byte showing the type of code that
invoked the exit.

X037JES2 IBM-supplied code
(CODER=JES2 on $SEAS).

X037USER Customer-written code
(CODER=USER on $SEAS).

X037RESP Response byte you set to have the following
meaning:

X037NORC Setting this bit on in the
response byte indicates that
the exit-specified return and
reason codes will be used.
Otherwise, the SAF return
code and reason code will
be used.

X037PLUS Exit 37 parameter list

X037PARM Address of the parameter list, in the Work
Access Verification Element ($WAVE), to
pass to SAF. This address allows you to

Exit 37

222 z/OS V1R4.0 JES2 Installation Exits

alter any parameters contained in the
parameter list. However, do not change the
address in this fullword field as SAF will not
get the expected parameters.

X037WAVE Address of the $WAVE. This address allows
you to alter any information contained in the
$WAVE. However, do not change the
address in this fullword field because you
might not point to a valid $WAVE.

X037RCBN 4-character identifier of related control block.

X037RCBA Address of related control block. If a control
block is not related with this request, the
address is zero.

X037RETC Fullword return code from exit routine. The
exit passes the return code you set here to
the caller in place of the SAF return code if
bit 6 of byte 10 is a 1.

X037RSNC Fullword reason code from exit routine. The
exit passes this reason code you set here to
the caller in place of the SAF reason code if
bit 6 of byte 10 is a 1.

X037SIZE Size of parameter list for Exit 37
2-10 N/A
11 Address of HCCT
12 N/A
13 Address of an available save area.
14 Return address
15 Entry address

Table 8. Security Function Codes

Function Code

Decimal
Value

Symbolic Name Meaning Related
Control
Block*

Job Masking

0 $SEANJES Reserved for user code. No

1 $SEAINIT Initialize security environment. SFI Yes

2 $SEAVERC Security environment create. JCT Yes

3 $SEAVERD Security environment delete. JCT Yes

4 $SEAXTRT Extract security information for this
environment.

SJB **

5 $SEASIC SYSIN data set create. IOT Yes

6 $SEASOC SYSOUT data set create. IOT Yes

7 $SEASIP SYSIN data set open. SDB Yes

8 $SEASOP SYSOUT data set open. SDB Yes

9 $SEAPSO Process SYSOUT data set open. SDB Yes

10 $SEAPSS Process SYSOUT data set select. PSO No

11 $SEATCAN TSO/E cancel. JCT No

12 $SEACMD Command authorization. None No

Exit 37

Exit 37: Post-security authorization call 223

Table 8. Security Function Codes (continued)

Function Code

Decimal
Value

Symbolic Name Meaning Related
Control
Block*

Job Masking

13 $SEAPRT Printer data set select. PDDB Yes

14 $SEADEL Data set purge. IOT **

15 $SEANUSE Notify user token extract None No

16 $SEATBLD Token build. SFI Yes

17 $SEARJES RJE signon, NJE source for command
authorization.

SWEL No

18 $SEADEVA Device authorization. PCE **

19 $SEANJEA NJE SYSOUT data set create. SFI Yes

20 $SEAREXT Re-verify token extract. JCT Yes

21 --- Reserved None

22 $SEANEWS Update of JESNEWS. SJB No

23 $SEANWBL Build JESNEWS token. IOT No

24 $SEAVERS Subtask to create access control
environment element (ACEE) for general

subtasks.

None No

25 $SEAAUD Audit for job in error. None No

26 $SEADCHK Authorization for $DESTCHK. DCW No

27 $SEATSOC SYSOUT data set create for trace. IOT No

28 $SEASSOC SYSOUT data set create for system job
data sets (for example, JOBLOG).

SFI Yes

29 $SEANSOC SYSOUT data set create for JESNEWS. IOT Yes

30 $SEASOX Transmit or offload of SYSOUT. PCE Yes

31 $SEANJEV VERIFYX for receive or reload of
SYSOUT.

SFI Yes

32 $SEAJOX Transmit or offload of job. PCE Yes

33 --- Reserved None

34 $SEASPBO Spool browse data set open SDB Yes

35 $SEASFS Scheduler service, TOKNXTR SSW No

36 $SEASSWM SWM modify ALTER AUTH None No

37 $SEASAPI SYSOUT application programming
interface

None No

38-255 --- Not currently in use. Not in use.

Notes:

1. * Your exit routine should always check for the presence of the control block
before using fields in the control block. Currently, the control block is not present
when the $SEAXTRT function occurs during an open of TSU or STC internal
readers.

2. ** Job exit mask suppression not in effect during selected processing.

Exit 37

224 z/OS V1R4.0 JES2 Installation Exits

Register contents when exit 37 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-13 N/A
14 Return address
15 Return code

A return code:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no other exit routines
are associated with this exit, continue with normal processing,
which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASX37A in SYS1.SHASSAMP contains a sample of Exit 37.

Exit 37

Exit 37: Post-security authorization call 225

226 z/OS V1R4.0 JES2 Installation Exits

Exit 38: TSO/E receive data set disposition

Function
During processing of a TSO/E RECEIVE command, SAF determines a user’s
authority to receive a data set based on the SECLABELs listed in the user’s profile.
Default actions JES2 takes when SAF returns control are:

v If the user can receive the data set with the current SECLABEL (the SECLABEL
the user logged on with), RECEIVE processing continues normally and JES2
selects the data set.

v If the user cannot receive the data set with the current SECLABEL, but the user
profile contains a SECLABEL that will allow the user to receive the data set,
JES2 does not select the data set at this time. Use exit 37 to override this
processing.

v If the user cannot receive the data set with the current SECLABEL or any of the
SECLABELs in the user profile, JES2 deletes the data set. Use this exit to
change this processing.

In this exit you set a response byte to have JES2:
v Continue normal processing, which deletes the data set.
v Bypass the data set. Bypassing the data set causes the data set to remain on

spool. This could cause an undesirable accumulation of data on spool.

You can also supply extra information to the user about the final disposition of the
data set. For more information about SECLABELs, see z/OS Security Server RACF
Security Administrator’s Guide.

Environment

Task
JES2 address space. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 38 in supervisor state and PSW key 1.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery. If an abend does occur within the exit
routine, JES2 assumes a response byte than indicates normal processing (delete
the data set) should occur.

Job exit mask
This exit point is not subject to job exit mask suppression.

© Copyright IBM Corp. 1988, 2002 227

Mapping macros normally required
$HASPEQU, $HCT, $PSO, $XPL

Point of processing
This exit is taken from HASPPSO. JES2 passes control to this exit after obtaining a
response from SAF for authorization to a data set during TSO/E RECEIVE
processing.

Programming considerations
None.

Register contents when exit 38 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 N/A
1 Pointer to a parameter list with the following structure, mapped by

$XPL:

Field Name Description
XPLID The eyecatcher
XPLLEVEL The version level of $XPL
XPLXITID The exit ID number
X038RESP Response byte
X038PSO Address of the Process SYSOUT Work Area (PSO)

mapped by $PSO. Field name PSOPGMN of this
work area contains the userid of the intended
receiver.

X038IND Indicator byte
X038COND Condition byte
X038JOE Address of the JOE

2-10 N/A
11 Address of the HCT
12 N/A
13 N/A
14 Return address
15 Entry address

Register contents when exit 38 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0 N/A
1 Pointer to a parameter list with the following structure, mapped by

$XPL:

Field Name Description
X038IND Indicator byte
X038COND Condition byte
X038RESP Response byte. Set by the exit before returning to

JES2:
X038KEEP If you set this bit on, JES2 will

bypass data set selection and will

Exit 38

228 z/OS V1R4.0 JES2 Installation Exits

keep the JOE. Otherwise, normal
processing will continue and the
data set will be deleted.

2-10 N/A
11 Address of the HCT
12 N/A
13 N/A
14 Return address
15 Return Code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no other exit routines
are associated with this exit, continue with normal processing,
which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASX38A in SYS1.SHASSAMP contains a sample of exit 38.

Exit 38

Exit 38: TSO/E receive data set disposition 229

230 z/OS V1R4.0 JES2 Installation Exits

Exit 39: NJE SYSOUT reception data set disposition

Function
This exit allows an installation to change the default processing (delete) for a data
set which failed RACF verification upon entering this node.

In this exit, you can:

v Continue default processing and delete the data set

v Accept the data set

Environment

Task
JES2 address space. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 39 in supervisor state and PSW key 1.

Recovery
No recovery is in effect when this exit is taken. Your exit routine must provide its
own recovery.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HASPEQU, $HCT, $JCT, $JCTX, $NHD, $PDDB, $XPL

Point of processing
This exit is taken from HASPNET. JES2 passes control to this exit when RACF fails
the verification for a SYSOUT data set received from another node.

Programming considerations
1. When rerouting the data set, your exit routine should ensure the data set has

the proper authority for the target node.

2. If your routine accepts SYSOUT already rejected by RACF, there will not be an
audit record for the subsequent data set create. The owner of the data set is the
userid of the job that created the SYSOUT, even if that userid could not own the
data on your system and RACF does not validate the assigned userid. If you
are using security labels, RACF assigns a SECLABEL of SYSLOW to the data
set created.

3. Expanding the JCT Control Block

© Copyright IBM Corp. 1988, 2002 231

You can add, expand, locate, or remove extensions to the job control table ($JCT)
control block from this exit using the $JCTX macro extension service. For example,
you can use these extensions to store job-related information. For more information,
see z/OS JES2 Macros.

Register contents when exit 39 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 N/A
1 Pointer to a parameter list with the following structure, mapped by

$XPL:

Field Name Description
XPLID The eyecatcher
XPLLEVEL The version level of $XPL
XPLXITID The exit ID number
X039IND Indicator byte
X039COND Condition byte
X039RESP Response byte.
X039PDDB PDDB address
X039JCT JCT address
X039NDH Data set header address

2-10 N/A
11 Address of the HCT
12 N/A
13 N/A
14 Return address
15 Entry address

Register contents when exit 39 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents

0 N/A

1 Pointer to a parameter list with the following structure, mapped by
$XPL:

Field Name Description

X039IND Indicator byte

X039COND Condition byte

X039RESP Response byte. Set by exit before returning to
JES2:

X039RECV Setting this bit on will allow JES2 to
receive the data set. Otherwise,
processing will continue and the
data set will be deleted.

2-13 N/A

14 Return address

15 Return Code

Exit 39

232 z/OS V1R4.0 JES2 Installation Exits

A return code of:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no other exit routines
are associated with this exit, continue with normal processing,
which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASX39A in SYS1.SHASSAMP contains a sample of Exit 39.

Exit 39

Exit 39: NJE SYSOUT reception data set disposition 233

234 z/OS V1R4.0 JES2 Installation Exits

Exit 40: modifying SYSOUT characteristics

Function
Use Exit 40 to change the characteristics of a SYSOUT data set before JES2
gathers the attributes of the data set into an output group ($JOE). For example, you
can change class, routing, or forms attributes of the data set. You can also affect
the grouping of the PDDBs, or delete the data set by setting the PDB1NSOT bit in
PDBFLAG1. Any logical attributes of the data can be changed with this exit.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places Exit 40 in supervisor state and PSW key 1.

Recovery
No recovery is in effect. Your exit routine should provide its own recovery.

Job exit mask
This exit is not subject to suppression.

Mapping macros normally required
$HASPEQU, $HCT, $DSCT, $JCT, $JCTX $JQE, $PDDB, $PCE, $XPL

Point of processing
JES2 passes control to this exit just before it creates JOEs for the job. This exit can
be taken:

v During spin processing, called from HASPSPIN before a JOE is created for a
spin PDDB.

v During unspun processing, called from HASPSPIN before a JOE is created for a
spin PDDB.

v During regular processing, called from HASPHOPE before the JOEs are created
from the non-spin PDDBs.

JES2 gathers the non-spin data sets into groups after leaving this exit and the
groups will reflect the changes your routine makes.

Programming considerations
v You can determine if JES2 invoked Exit 40 for a transaction program by

determining if a $DSCT is available in field X040DSCT of the $XPL.

© Copyright IBM Corp. 1988, 2002 235

v You can not change the characteristics of SYSOUT data sets defined as
OUTPUT=DUMMY; they are not passed to Exit 40. However, SYSOUT data sets
defined as OUTDISP=PURGE are passed and available to this exit.

v Expanding the JCT Control Block

You can add, expand, locate, and remove extensions to the job control table ($JCT)
control block from this exit using the $JCTX macro expansion service. For example,
you can use these extensions to store job-related information. For more information,
see z/OS JES2 Macros.

Note that only the $JCTXGET macro can be used from this exit if any of the
following indicator bytes (for non-spin and unspun PDDBs) have been marked on in
the parameter list:
v X040NSPN
v X040UNSP

If these bytes are set on, JES2 will not write modifications of the extensions to
spool.

Contents of registers at entry to exit 40
The contents of the registers on entry to this exit are:

Register Contents
0 Not applicable
1 Pointer to a parameter list with the following structure, mapped by

$XPL:

Field Name Description
XPLID The eyecatcher
XPLLEVEL The version level of $XPL
XPLXITID The exit ID number
X040IND Indicator byte.

X040SPIN If this bit setting is on, it is a spin
PDDB.

X040NSPN If this bit setting is on, it is a
non-spin PDDB.

X040UNSP If this bit setting is on, it is an
unspun PDDB.

X040COND Condition byte
X040RESP Response byte
X040PDDB Address of $PDDB
X040JQE Address of $JQE
X040JCT Address of $JCT, or 0. JES2 is unable to supply the

address of a $JCT when processing spin PDDBs.
X040DSCT Address of $DSCT or 0. JES2 only supplies the

address of a $DSCT when processing a SYSOUT
data set produced by a transaction program.

2-10 Not applicable
11 Address of $HCT
12 Not applicable
13 Address of $PCE
14 Return address
15 Entry address

Exit 40

236 z/OS V1R4.0 JES2 Installation Exits

Contents of register prior to returning to JES2
Register Contents
0-14 Unchanged
15 Return Code

A return code of:
0 Tells JES2 that if additional exit routines are associated with this

exit, call the next consecutive exit routine.
4 Tells JES2 that even if additional exit routines are associated with

this exit, ignore them.

Coded example
Module HASX40A in SYS1.SHASSAMP contains a sample of Exit 40.

Exit 40

Exit 40: modifying SYSOUT characteristics 237

238 z/OS V1R4.0 JES2 Installation Exits

Exit 41: modifying output grouping key selection

Function
Use exit 41 to affect which OUTPUT JCL keywords JES2 uses for generic grouping.

JES2 passes this exit a table that contains the SJF keys for the default generic
grouping keywords. There is a one-to-one correspondence between the SJF keys
and the OUTPUT JCL keywords. You can use this exit to add keys to or delete keys
from this table. You can add up to 24 additional keys at the end of the table. Delete
keys by compressing the table.

Generic grouping cannot perform special processing for keywords (such as handling
defaults or overrides). A keyword should not be grouped generically if it has any of
the following attributes:

v The keyword can be overridden by another source. CLASS, DEST, and WRITER
can be overridden on the DD statement. The network SYSOUT receiver uses the
group id in a data set header; the group id might have been generated by the
execution node and thus not be present on the OUTPUT statement.

v The keyword can be specified at dynamic unallocation (for example, CLASS).

v The keyword has a default value that JES2 must provide. DEST, OUTDISP, and
PRMODE, for example, have default values.

v The keyword can be specified in an alternate way (for example, HOLD=YES on
the DD statement is equivalent to OUTDISP=HOLD).

Keywords that require special processing should be managed by the PDDB and be
grouped upon by the output processor.

JES2 passes this exit the name of the JCL definition vector table (JDVT) that
defines these keys. The table of OUTPUT grouping keys applies to all OUTPUT
statements processed using this JDVT.

Environment

Task
User environment. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
AMODE 31, RMODE ANY

Supervisor/problem program
JES2 places exit 41 in supervisor state and PSW key 0 or 1.

Recovery
No recovery is in effect. Your exit routine must provide its own recovery.

Job exit mask
This exit is not subject to job exit mask suppression.

© Copyright IBM Corp. 1988, 2002 239

Mapping macros normally required
$HASPEQU, $HCCT, $XPL, SJTRP.

Point of processing
This exit is taken from HASCGGKY during JES2 initialization after the default
OUTPUT grouping keywords have been selected, but before any grouping is done
based on this JDVT name. The table of grouping keys, as modified by the exit, is
used for all subsequent grouping for that JDVT name.

Programming considerations
None

Register contents when exit 41 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 Zero
1 Pointer to a parameter list with the following structure, mapped by

$XPL:

Field Name Description
XPLID The eyecatcher
XPLLEVEL The version level of $XPL
XPLXITID The exit ID number
X041IND Indicator byte
X041COND Condition byte
X041RESP Response byte
X041GGKT Address of the grouping keys table. The table is

mapped by the SJTRKEYL DSECT in the
IEFSJTRP parameter list. See z/OS MVS
Programming: Assembler Services Reference
ABE-HSP for more information about IEFSJTRP.

X041DEFN Number of defined entries in the grouping keys
table. If the exit changes the number of defined
entries, it must update this field.

X041TOTN Total number of entries in the grouping keys table,
including defined entries and entries reserved for
additional keys.

X041RSVN Number of entries reserved for additional keys.
X041JDVT JDVT name

2-10 N/A
11 Address of the $HCCT
12 N/A
13 Address of an available save area
14 Return address
15 Entry address

Register contents when exit 41 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-13 Unchanged
14 Return Address

Exit 41

240 z/OS V1R4.0 JES2 Installation Exits

15 Return Code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. Otherwise, continue with
normal processing, which is determined by the particular exit point
from which the exit routine was called.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASX41A in SYS1.SHASSAMP contains a sample of exit 41.

Exit 41

Exit 41: modifying output grouping key selection 241

242 z/OS V1R4.0 JES2 Installation Exits

Exit 42: Modifying a notify user message

Function
This exit allows you to affect how a notify user message will be handled. When a
notify user message is to be issued, the notify user message SSI service routine is
invoked. The routine validates the input and then invokes this installation exit,
before the notify user message is built and issued. Use Exit 42 to:

v Cancel the message.

v Change the destination of the message. You can change the userid and/or node
to which the message is to be routed.

v Change the message text.

v Continue processing without changing the message or destination.

Environment

Task
User address space. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 42 in supervisor state and PSW key 0 or 1.

Recovery
$ESTAE recovery is in effect, under the $ESTAE established when the SSI was
invoked. However, your exit routine should provide its own recovery, as with every
exit.

Job exit mask
This exit is not subject to job exit mask suppression.

Mapping macros normally required
$HCCT, $XPL, SSNU, SSOB

Point of processing
JES2 takes this exit after the input for a message has been validated and
authorization checking has been done for the receiving userid and node. If the exit
routine changes the destination, it must provide its own authority and validity
checks. Exit 42 will return to the SSI service for the message processing to be
completed.

Programming considerations
1. Before this exit is invoked, the system does validity and authorization checking

of the node and userid that is to receive the message. Therefore, if the exit
changes the node and/or userid to which the message will be sent, the
installation must check the validity and the authority of the new destination.

© Copyright IBM Corp. 1988, 2002 243

2. If errors were detected by the SSI service, the bit setting X042CANC will be on
in the response byte, indicating that the notify message is to be canceled. If
your exit routine corrects the error and turns X042CANC off, to issue the
message, it should also zero out the exit-supplied reason and return codes in
fields X042REAS and X042RC of the parameter list.

Register contents when exit 42 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 N/A

1 Pointer to a parameter list with the following structure, mapped by
$XPL:

Field Name Description

XPLID The eyecatcher

XPLLEVEL The version level number of $XPL

XPLXITID The exit ID number

X042IND Indicator byte

X042COND Condition byte. This byte might contain the
following bit settings on entry, if an error exists:
X042EMSG Error in message specification
X042NOXT No extension exists
X042EXTE Extension error
X042NOAU No authorization
X042UERR Userid not specified
X042DERR Destination error
X042NOST Storage not obtainable

X042RESP Response byte.

X042SSNU Address of the SSNU extension for the SSOB

X042NEWN New node identifier, in binary form, to be returned
from exit.

X042REAS Exit-supplied reason code

X042RC Exit-supplied return code

2-10 N/A

11 Address of the HCCT

12 N/A

13 N/A

14 Return address

15 Entry address

Register contents when exit 42 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0 N/A

Exit 42

244 z/OS V1R4.0 JES2 Installation Exits

1 Pointer to a parameter list mapped by $XPL:

Field Name Description

XPLRESP This response byte must be set by the exit before
returning to JES2. Set the response byte as follows:

X042CANC This bit setting turned on in the
response byte indicates that the
notify message is to be canceled.
Otherwise, the notify message is to
be issued. This bit will be turned off
on entry if no errors exist before the
installation exit gets control, but will
be turned on entry if errors are
found before the installation exit
gets control. If the exit corrects the
errors detected, this bit setting
should be reset to be off.

X042SETR This bit setting turned on in the
response byte indicates that both a
return code and a reason code
were specified in the parameter list.
If this bit setting is not on, neither
reason code nor return code are
present.

X042NOCH This bit setting turned on in the
response byte indicates that the
node has been changed. If this bit
setting is not turned on, there has
been no change to the destination
node.

X042NEWN New node identifier, in binary form, to be returned
from exit, if there was a change in the node.

X042REAS Exit-supplied reason code

X042RC Exit-supplied return code
2-14 N/A
15 Return Code

A return code:
0 Tells JES2 that if additional exit routines are associated with this

exit, call the next consecutive exit routine.
4 Tells JES2 that even if additional exit routines are associated with

this exit, ignore them.

Coded example
Module HASX42A in SYS1.SHASSAMP contains a sample of exit 42.

Exit 42

Exit 42: Modifying a notify user message 245

246 z/OS V1R4.0 JES2 Installation Exits

Exit 43: APPC/MVS TP selection/change/termination

Function
When the system processes an APPC/MVS transaction program (TP) or a USS
application, this exit allows you to receive control during:

v TP selection processing, which means the TP initiator selected a TP to run.

v TP termination processing, which means the TP initiator completed processing a
TP.

v TP change processing, which means the TP initiator was processing a
multi-transaction TP. The APPC/MVS transaction initiator or USS BPXAS initiator
started another TP as a result of completing another TP.

While JES2 is processing a TP selection request, you could implement Exit 43 to:
v Create installation-specific control blocks to be used by subsequent installation

exits that are invoked for the TP after Exit 43.
v Modify the output limits maintained in the $SJB.
v Issue messages to the TP’s message log.

While processing a multi-transaction TP, if JES2 is invoked for a change request,
you could implement Exit 43 to:
v Reset the output limit counts associated with the TP’s SYSOUT data set
v Issue messages to the TP’s message log.

During TP termination processing, you could implement Exit 43 to:

v Release any control blocks Exit 43 previously obtained for the TP.

v Issue messages to the TP’s message log.

Related exits
IBM recommends that you use exit IEFUJI to terminate a TP instead of Exit 43.
Refer to z/OS MVS Installation Exits for additional information on exit IEFUJI.

If a SYSOUT data set created by a TP exceeded the output limits specified in Exit
43 or in the initialization stream, JES2 invokes Exit 9.

Recommendations for implementing exit 43
It might be necessary for you to create control blocks that your installation will use
while APPC/MVS is processing the transaction program. To create
installation-specific control blocks:

1. Create a DSECT for your installation’s control block

2. In Exit 43:

a. Include all the control blocks necessary for the exit. Mapping macros
normally required in the Environment section identifies all the control blocks
IBM recommends should be included. Be sure to include any
installation-specific control blocks you have created for TPs.

b. Issue a $GETMAIN macro to obtain storage for the control block.

c. Initialize the control block with the required information.

d. Use the information as required while JES2 processes the transaction
program.

© Copyright IBM Corp. 1988, 2002 247

Your installation might want to issue installation-defined messages to the TP
message log when either JES2 selects or terminates a transaction program. Code
the following macro to issue a message in Exit 43:
$WTO ROUTE=$LOG

Environment

Task
User (APPC/MVS transaction initiator). You must specify ENVIRON=USER on the
$MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 43 in supervisor state and PSW key 0

Locks held prior to entry
$SJB

Restrictions
v Exit 43 should not perform any I/O . If I/O is performed in Exit 43, your installation

might experience a degradation in its performance.

Recovery
$ESTAE is in effect and provides minimal recovery. JES2 will attempt to recover
from any errors experienced by Exit 43. However, you should not depend on JES2
for recovery.

Job exit mask
Exit 43 is subject to suppression. You can suppress exit 43 by either implementing
Exit 2 to set the 43rd bit in the job exit suppression mask (JCTXMASK) or by
indicating the exit is disabled in the JES2 initialization stream. All TPs submitted
under the APPC/MVS transaction initiator will not invoke Exit 43.

Storage recommendations
Subpool 230

Mapping macros normally required
$HASPEQU, $SJB, $JCT, $JCTX $XPL

Point of processing
JES2 invokes Exit 43 during TP selection, change, or termination processing.

Programming considerations
You should consider the following when implementing installation exit 43:

Exit 43

248 z/OS V1R4.0 JES2 Installation Exits

v Any code implemented in this installation exit will be invoked for every
transaction program submitted under this initiator.

v The output limits are found in the $SJB and the $SJXB.

v Expanding the JCT Control Block

You can add, expand, locate, or remove extensions to the job control table
($JCT) control block from this exit using the $JCTX macro extension service. For
example, you can use these extensions to store job-related information. For more
information, see z/OS JES2 Macros.

Register contents when exit 43 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 Not applicable
1 Address to a parameter list with the following structure:

Field Name

XPLID Eyecatcher - $XPL

XPLLEVEL Version level of $XPL

XPLXITID Exit identifier number - 43

XPLEXLEV Version level of the exit

X043IND Indicator byte

X’80’ Indicates Exit 43 was invoked for
TP select processing.

X’40’ Indicates Exit 43 was invoked for
TP terminate processing.

X’20’ Indicates Exit 43 was invoked for
TP change processing.

X043COND Not applicable to Exit 43

X043RESP Not applicable to Exit 43

X043SJB Pointer to the $SJB

X043JCT Pointer to the $JCT

X043SIZE Length of $XPL for Exit 43
2-10 Not applicable
11 Address of the $HCCT
12 Not applicable
13 Address of a save area
14 Return address
15 Entry address

Register contents when exit 43 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-14 Unchanged from entry registers
15 Return code

A return code of:

Exit 43

Exit 43: APPC/MVS TP selection/change/termination 249

0 Indicates JES2 should continue processing the TP.

4 Indicates JES2 should continue processing the TP but ignore any
additional exits associated with the TP.

Coded example
Module HASX43A in SYS1.SHASSAMP contains a sample of Exit 43.

Exit 43

250 z/OS V1R4.0 JES2 Installation Exits

Exit 44: JES2 converter exit (JES2 main)

Function
This exit allows you to modify job-related control blocks after the converter running
as a subtask in the JES2 address space has converted the job’s JCL into C/I text.
After the system has converted the job’s JCL, your installation might want to:

v Change fields in the job’s job queue element ($JQE), such as:

– Change the priority of the job

– Release the job from hold

– Route the job to print on a device other that what was specified on the job’s
JCL

– Reassign the system where the job should execute and/or print

v Perform spool I/O for installation-defined control blocks. You can supply a
scheduling environment to the JQASCHE field in the JQE. This will override any
scheduling environment from the JOBCLASS(n) for this job. JES2 does not
validate the scheduling environment; therefore, be careful to supply a valid
scheduling environment or the system will not schedule the job for execution. If
needed, use Exit 6 to provide scheduling environment validation.

v Exit 44 can be used to reject duplicate TSO logons.

Related exits
Exit 6 is invoked while the converter subtask is processing the job. Exit 6 is called
earlier than Exit 44 during converter processing. Any changes your installation
needs to make to the job control table ($JCT) can also be done in exit 6.

Recommendations for implementing exit 44
If your installation implemented Exit 6 to extract information from the job’s JCL and
created installation-specific control blocks, you can implement Exit 44 to write those
installation-specific control blocks to spool by:

1. Issuing a $GETBUF macro to obtain a buffer. The information contained in the
installation-specific control block should be moved into the buffer.

2. Issuing a $CBIO macro to write the buffer to spool.

3. Updating a user field in the $JCT with the address of the spool
installation-specific control block.

4. If you intend to update the JQE passed in your exit, $DOGJQE should be used
to obtain an update mode JQE and to return it when the updates are complete.
You do not need to write the $JCT to spool since JES2 will write the $JCT to
spool after returning from Exit 44.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

© Copyright IBM Corp. 1988, 2002 251

|

Supervisor/problem program
JES2 places Exit 44 in supervisor state and PSW key 1

Recovery
$ESTAE is in effect and HASPCNVT provides minimal recovery. JES2 attempts to
recover from any abends experienced by the converter main task. However, you
should not depend on JES2 for recovery.

Job exit mask
Exit 44 is subject to suppression. You can suppress Exit 44 by either implementing
exit 2 to set the 44th bit in the job exit suppression mask (JCTXMASK) or by
disabling the exit through the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $JQE, $JCT, $JCTX $XPL

Point of processing
Exit 44 is invoked from the JES2 main task after the converter subtask has
converted the job’s JCL. It is invoked before JES2 writes job-related control blocks
to spool.

After Exit 44 returns to JES2, JES2 examines the response byte in the $XPL. If an
error was encountered and Exit 44 set the response byte in Exit 44 to indicate the
job should be placed on the:
v Purge queue or output queue, JES2 places the job on the specified queue.
v Purge queue and output queue, JES2 places the job on the purge queue.

If Exit 44 did not set the response byte, JES2 places the job on the execution
queue.

Programming considerations
The following are programming considerations for Exit 44:

1. If Exit 44 sets an indicator in the response byte (XPLRESP) before returning to
JES2, JES2 honors the setting over any specifications made in the job’s JCL.

2. Locating the JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTGET macro. For more information, see z/OS JES2 Macros.

3. If you need to change the scheduling environment, use the JCTSCHEN field in
the JCT.

Register contents when exit 44 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 Not applicable to Exit 44
1 Address of a parameter list with the following structure:

Field Name

XPLID Eyecatcher - $XPL

XPLLEVEL Version level of $XPL

Exit 44

252 z/OS V1R4.0 JES2 Installation Exits

XPLXITID Exit identifier number - 44

XPLEXLEV Version level of the exit

X044IND Indicates the type of error, if any, while converting
the job’s JCL

v X044JCLO indicates the converter successfully
converted the job’s JCL

v X044JCLE indicates the converter encountered
an error while converting the job’s JCL

v X044CPER indicates a system error occurred
while the converter was converting the job’s JCL.
Refer to X044COND for additional information.

X044COND Indicates additional information on the type of error
that was encountered.

v X044DLGN a user is already logged onto the
system with the same TSU user id.

v X044FKOF JES2 was unable to open the system
data sets for the converter.

v X044CNWT JES2 could not convert the job
because the job’s JCLLIB data set was not
available.

X044RESP Response byte

X044CNVQ JES2 requeues the job to conversion

X044JCT Address of the $JCT

X044JQE Address of the $JQE

X044SIZE Length of $XPL for Exit 44
2-10 Not applicable to Exit 44
11 Address of the $HCT
12 Not applicable
13 Address of the $PCE
14 Return address
15 Entry address

Register contents when exit 44 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0 Not applicable
1 Address of a parameter list with the following structure:

Field Name

X044IND Indicator byte

X044COND Condition byte

X044RESP Response byte

X044OUTQ Indicates JES2 should place the job
on the output queue

X044PURQ Indicates JES2 should place the job
on the purge queue

Exit 44

Exit 44: JES2 converter exit (JES2 main) 253

X044JCT Address of the $JCT

X044JQE Address of the $JQE
2-10 Not applicable
11 Address of the $HCT
12 Not applicable
13 Address of the $PCE
14 Return address
15 Return code

A return code of:

0 Indicates JES2 should continue processing the job.

4 Indicates JES2 should continue processing the job but ignore any
additional exits associated with the job.

Coded example
Module HASX44A in SYS1.SHASSAMP contains two samples of Exit 44.

Exit 44

254 z/OS V1R4.0 JES2 Installation Exits

|

Exit 45: Pre-SJF service request

Function
This exit allows you to process requests for the scheduler JCL facility prior to
JES2’s processing of the request. A function code of 70 on a subsystem IEFSSREQ
call invokes the exit. Exit 45 allows the installation to:

v Examine the request to determine if the system should continue to process the
request for SJF services

v Redirect error messages for a request.

Environment

Task
User task. You must specify ENVIRON=USER on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places exit 45 in supervisor state and PSW key 1

Recovery
A $ESTAE recovery is in effect for exit 45. However, as with every exit, your exit
routine should not depend on JES2 for recovery. JES2 cannot anticipate the exact
purpose of your exit routine and can therefore provide minimal recovery. You should
provide recovery for errors that might be encountered by exit 45’s processing.

Job exit mask
Exit 45 is subject to suppression. The installation can suppress the exit either by
implementing exit 2 to set bit 45 in the job exit suppression mask (JCTXMASK) or
by indicating the exit is disabled in the JES2 initialization stream.

Storage recommendations
Subpool 241 or 231

Mapping macros normally required
$HASPEQU, $HCT, $XPL, $SFRB, IAZSSSF

Point of processing
Exit 45 is invoked by a subsystem issuing an IEFSSREQ macro with a function
code of 70. This is a request for scheduler JCL facility (SJF) services. The request
is routed through the subsystem interface and JES2, module HASCSJFS, receives
control. HASCSJFS:
1. Establishes a recovery environment.
2. Validates the SSOB and its extension SSSF.
3. Issues a $SEAS request to obtain the requestor’s UTOKEN

© Copyright IBM Corp. 1988, 2002 255

Register contents when exit 45 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 Not applicable to exit 45

1 Address of the $XPL parameter list, which has the following
structure:

XPLID Eye-catcher for the $XPL - $XPL

X045VERN Indicates the version number of exit 45

XPLXITID Exit identifier - 45

XPLEXLEV Version level of the exit

X045SIZE Indicates the length of the $XPL parameter list for
exit 45.

X045IND Indicator byte

X045COND If set, indicates the reason why JES2 is unable to
process the SJF request. If XPLCOND is set to:

v X045PCED, indicates the JES2 SJF PCE is not
able to process the request because it is
disabled.

v X045JESD, indicates JES2 is currently not
active.

v X045NOXT, indicates that JES2 could not locate
the SSSF extension of the SSOB.

v X045EXTE, indicates the SSSF extension was
not valid.

v X045NOAU, indicates that JES2 could not
validate the request because it could not obtain
the security token for the request.

v X045INVF, indicates JES2 could not process the
SJF request because the requestor did not
indicate an request the correct function.

v X045INVI indicates JES2 could not process the
SJF request because the input to the request
was in error.

v X045NOST, indicates JES2 could not obtain
enough storage to process the request.

Note: If XPLCOND is set, JES2 has preset
XPLRESP to X045CANC to cancel the
request for SJF services.

X045RESP Response byte

X045SSSF Contains the address of IAZSSSF.

X045SFRB Contains the address of the JES2 scheduler
facilities request block (SFRB) to be given to the
JES2 SJF PCE.

2-10 Not applicable to exit 45

Exit 45

256 z/OS V1R4.0 JES2 Installation Exits

11 Address of the $HCCT

12-13 Not applicable to exit 45

14 Return address

15 Entry point address of exit 45

Register contents when exit 45 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents

0 Not applicable to exit 45

1 Address of the $XPL parameter list which has the following
structure:

X045IND Indicator byte

X045COND Condition byte

X045RESP Indicates the processing or return codes the
installation exit should return to the application
program that requested the SJF service. A value of:
v X045CANC indicates JES2 should not process

the request.
v X045SETR indicates exit 45 returned its own

return and reason code to the application
program that issued the request for SJF services.
The return and reason codes are located in
X045REAS and X045RC.

X045REAS Is the installation-specified reason code that will be
returned to the application program that issued the
request for SJF services.

X045RC Is the installation-specified return code that will be
returned to the application program that issued the
request for SJF services.

2-13 Not applicable to exit 45

14 Return address

15 Exit effector return code

A return code of:

0 Indicates JES2 should continue processing the job.

4 Indicates JES2 should continue processing the job, but ignore any
additional exits associated with the job.

Coded example
Module HASX45A in SYS1.SHASSAMP contains a sample of exit 45.

Exit 45

Exit 45: Pre-SJF service request 257

258 z/OS V1R4.0 JES2 Installation Exits

Exit 46: Modifying an NJE data area prior to its transmission

Function
This exit allows you to change an NJE data area prior to transmitting a job to
another node or while offloading jobs to spool. (See z/OS MVS System Messages,
Vol 5 (EDG-GFS) for more information about the various NJE data areas that can
be transmitted across a network.) Before transmitting the NJE job, your installation
might need to add, remove or change information to one or more of the following
NJE data areas:
v NJE job header
v NJE data set header
v NJE RCCS (Record Characteristics Change Section) header
v NJE job trailer

Your installation might want to:

v Remove any installation-defined sections your installation added to the NJE job
when exit 47 was processing the NJE job. However, it might not be necessary to
remove any installation-defined sections because installation-defined sections are
ignored when they are received at other nodes.

v Add or change information, such as accounting, security or scheduling
information, needed by another node in the network.

v Extract information from user fields in JES2 defined control blocks and/or
installation defined control blocks and transfer them to the NJE data areas.

v Remove, modify, or add an RCCS header prior to sending the job stream into the
network. You might want to perform the following actions based on the
maintenance level of the receiving node:
– Remove an RCCS header. If you have receiving nodes in your network that

do not have APAR OW13643 applied, then you might want to remove the
leading RCCS header in the job stream before it is transmitted into the
network.

– Add RCCS header(s). If you have nodes in your network that do not have
APAR OW32040 applied, then you might want to insure that all possible
RCCS headers are sent unconditionally.

Related exits
Consider using:

v Exit 40 if you want to change the output characteristics associated with a
SYSOUT data set before it prints at your node.

v Exit 2 or exit 47 to modify NJE job headers for jobs that are received for
processing at your installation.

Recommendations for implementing exit 46
If you want to remove an installation-defined section from the NJE data area
passed to Exit 46, you should:

1. Use XPLIND to determine the type of NJE data area that JES2 passed to Exit
46 for processing.

2. Issue a $NDHREM macro to remove the installation-defined section from the
NJE data area

© Copyright IBM Corp. 1988, 2002 259

If your installation issues a $NHDXMT in Exit 46 to transmit the NJE data area, you
must set field XPLRESP to X046BYP to ensure JES2 does not attempt to resend
the NJE data area.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 46 in supervisor state and PSW key 0.

Recovery
Because different types of recovery are provided by the networking or spool offload
PCE, your installation should provide its own recovery routine.

Job exit mask
Exit 46 is subject to suppression. Your installation can either implement exit 2 to set
the 46th bit in the job exit suppression mask (JCTXMASK) or disable the exit in the
JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $PDDB, $SCR, $XPL, $HCT, $NHD, $HCCT, $DCT, $JQE, $JCT,
$JCTX $JOE, $PCE

Point of processing
JES2 invokes Exit 46 prior to transmitting a job while performing spool offload
processing or while transmitting an NJE job across the network. Prior to invoking
Exit 46, JES2:

1. Builds the NJE data area in a 32k buffer

2. Removes any JES2-specific sections from the NJE data area if JES2 is
transmitting the NJE data area to another node in the network. The following
NJE data areas contain a JES2 section:
v Job Header
v Job Trailer

For spool offload processing, the transmission routine does not alter the NJE
data area.

3. Initializes the $XPL parameter and invokes Exit 46.

After returning from Exit 46, JES2 examines the response byte (XPLRESP) in the
$XPL parameter list. If in Exit 46 you set XPLRESP to:

v X046TERM, it indicates an error occurred, JES2 terminates the transmission of
the NJE data area, and places the job in hold.

v X046BYP, JES2 continues processing the remainder of the NJE job because Exit
46 transmitted the buffer that contained the NJE data area.

Exit 46

260 z/OS V1R4.0 JES2 Installation Exits

If XPLRESP has not been set, JES2 transmits the NJE data area.

Programming considerations
The following are programming considerations for Exit 46:

v If your installation needs to process NJE data areas differently for spool offload
processing and NJE processing, use field DCTDEVTP in the $DCT to determine
the type of job JES2 is processing.

v Locating the JCT Control Block Extensions

You can locate extensions to the job control table ($JCT) control block from this
exit using the $JCTXGET macro. For example, you can use these extensions to
retrieve job-related information from the $JCTX control block to ship across the
network in $NHD macro sections. For more information, see z/OS JES2 Macros.

Register contents when exit 46 gets control
The contents of the registers on entry to this exit are:

Register Contents

0 Not applicable to Exit 46

1 Address of the $XPL parameter list, which has the following
structure:

XPLID Eye-catcher for the $XPL - XPL

X046VERN Indicates the version number of Exit 46

XPLXITID Exit identifier - 46

XPLEXLEV Version level of the exit

X046IND Indicates the type of NJE data area JES2 passed to
Exit 46 for processing. A value of:

v X046HDR indicates an NJE job header was
passed to Exit 46 for processing.

v X046TRL indicates an NJE job trailer was
passed to Exit 46 for processing.

v X046DSH indicates an NJE data set header was
passed to Exit 46 for processing.

v X046RCCS indicates an NJE RCCS header was
passed to Exit 46 for processing.

X046COND Condition byte

v X046R1ST indicates that this RCCS header
precedes the first data record.

X046RESP Response byte

On input, the response bit X046BYP may be set to
indicate that default JES2 processing would
suppress the sending of the header. This is the
case when a SYSIN data set is being sent and
JES2 decided not to send an RCCS header.

X046HADR Contains the address of the NJE data area

X046DCT Contains the address of the $DCT

X046JQE Contains the address of the $JQE

Exit 46

Exit 46: Modifying an NJE data area prior to its transmission 261

X046JCT Contains the address of the $JCT

X046PDDB Contains the address of the $PDDB if Exit 46 is
processing an NJE data set header. If Exit 46 is
processing an NJE job header or trailer, a 0 is
passed as the address.

X046JOE Contains the address of the $JOE if Exit 46 is
processing an NJE data set header. If Exit 46 is
processing an NJE job header or trailer, a 0 is
passed as the address.

X046SIZE Indicates the length of the $XPL parameter list for
Exit 46.

2-10 Not applicable to Exit 46

11 Address of the $HCT

12 Not applicable to Exit 46

13 Address of the spool offload or networking $PCE

14 Return address

15 Entry point address of Exit 46

Register contents when exit 46 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents

0 Not applicable to Exit 46

1 Address of the $XPL parameter list, which has the following
structure:

XPLID Eye-catcher for the $XPL - $XPL

X046VERN Indicates the version number of Exit 46

XPLXITID Exit identifier - 46

XPLEXLEV Version level of the exit

X046IND Indicator byte

X046COND Condition byte

X046RESP Indicates the processing Exit 46 determined JES2
should perform after processing the NJE data area.
A value of:
v X046TERM indicates Exit 46 determined the NJE

data area should not be transmitted. JES2 will
discard the remainder of the NJE job.

v X046BYP indicates JES2 should not transmit the
NJE data area. Exit 46 issued a $NHDXMT
EXIT=NO macro to transmit the NJE data area.
JES2 will continue to process the remainder of
the NJE job.

X046SIZE Indicates the length of the $XPL parameter list for
Exit 46.

2-13 Not applicable to Exit 46

Exit 46

262 z/OS V1R4.0 JES2 Installation Exits

14 Return address

15 Exit effector return code

A return code of:

0 Indicates JES2 should continue processing the job.

4 Indicates JES2 should continue processing the job, but ignore any
additional exits associated with Exit 46.

Coded example
Module HASX46A in SYS1.SHASSAMP contains a sample of Exit 46.

Exit 46

Exit 46: Modifying an NJE data area prior to its transmission 263

264 z/OS V1R4.0 JES2 Installation Exits

Exit 47: Modifying an NJE data area before receiving the rest
of the NJE job

Function
This exit allows you to:

v Examine and change an NJE data area prior to receiving the rest of the NJE job
from another node or prior to receiving jobs from spool.

v Add, expand, locate, or remove an extension to the $JCT control block where
accounting information can be stored.

Before receiving an NJE job, your installation might need to add, remove or change
information to one or more of the NJE data areas below. (See z/OS MVS System
Messages, Vol 5 (EDG-GFS) for more information about the various NJE data
areas that can be transmitted across a network.)
v NJE job header
v NJE data set header
v NJE RCCS (Record Characteristics Change Section) header
v NJE job trailer

Your installation might want to:

v Remove any installation-defined sections your installation added to the NJE job
when exit 46 was processing the NJE job.

v Add or change information, such as accounting or security information, needed
by another node in the network.

v Extract information from the NJE data areas and transfer them to user fields in
JES2 defined control blocks and/or installation defined control blocks.

Related exits
If you want to change the output characteristics associated with a SYSOUT data
set, consider using exit 40.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 47 in supervisor state and PSW key 1.

Recovery
Because different types of recovery are provided by the networking or spool offload
PCE, your installation should provide its own recovery routine.

© Copyright IBM Corp. 1988, 2002 265

Job exit mask
Exit 47 is subject to suppression. The installation can suppress the exit either by
implementing exit 2 to set the 47th bit in the job exit suppression mask
(JCTXMASK) or by indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $PDDB, $SCR, $XPL, $HCT, $NHD, $HCCT, $DCT, $JQE, $JCT,
$JCTX, $JOE, $PCE

Point of processing
JES2 invokes Exit 47 prior to receiving a job while performing spool offload
processing or while transmitting an NJE job across the network. Prior to invoking
Exit 47 JES2:

1. Allocates a dummy $JCT and $JQE. JES2 initializes these data areas with
minimal information.

2. Receives the NJE data area and invokes Exit 47 to perform installation-specific
processing.

After returning from Exit 47, JES2 determines if exit 47 indicated whether or not the
NJE data area should be received. If exit 47 indicated the NJE data area should not
be received, JES2 places the NJE job in hold on the transmitting node. Otherwise,
JES2 continues to process the NJE job. You cannot use this exit to update
IBM-defined JCT or JQE fields in the dummy JCT and dummy JQE, respectively.
You can, however, update user-defined fields (such as JCTUSERx) or any $JCTX
extensions you have created. JES2 propagates changes to ‘user’ fields to the $JCT
and $JQE.

Programming considerations
The following are programming considerations for Exit 47:

v If your installation needs to process NJE data areas differently for spool offload
processing and NJE processing, use field DCTDEVTP in the $DCT to determine
the type of job JES2 is processing.

v If exit is being invoked for a job header, then the JQE address passed points to a
dummy JQE (as indicated by X047BJQE). This JQE is not valid as input to
$DOGJQE. For other header types, use $DOGJQE to access the JQE passed.
See “Checkpoint control blocks” on page 286 for more information.

v Expanding the JCT Control Block

You can add, expand, locate, or remove extensions to the job control table
($JCT) control block from this exit using the $JCTX macro extension service. For
example, you can use these extensions to store job-related information. For more
information, see z/OS JES2 Macros.

Register contents when exit 47 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 Not applicable to Exit 47
1 Address of the $XPL parameter list which has the following

structure:

XPLID Eye-catcher for the $XPL - XPL

Exit 47

266 z/OS V1R4.0 JES2 Installation Exits

X047VERN Indicates the version number of Exit 47

XPLXITID Exit identifier - 47

XPLEXLEV Version level of the exit

X047IND Indicates the type of NJE data area JES2 passed to
Exit 47 for processing. A value of:

v X047HDR indicates an NJE job header was
passed to Exit 47 for processing.

v X047TRL indicates an NJE job trailer was
passed to Exit 47 for processing.

v X047DSH indicates an NJE data set header was
passed to Exit 47 for processing.

v X047RCCS indicates an NJE RCCS header was
passed to Exit 47 for processing.

v X047BJQE indicates that the JQE address in
field X047JQE points to a working copy of the
JQE that has not yet been added to the job
queue. The working copy should not be used in
services that expect the address of a real JQE.
For example, this JQE address should not be
used as input to $DOGJQE.

X047COND Condition byte

X047RESP Response byte

X047HADR Contains the address of the NJE data area

X047DCT Contains the address of the $DCT

X047JQE Contains the address of either a working copy of
the $JQE or the address of a real $JQE. Refer to
the X047BJQE bit to determine the type of $JQE
that this address points to.

X047JCT Contains the address of the $JCT

X047PDDB Contains the address of the $PDDB if Exit 47 is
processing an NJE data set header. If Exit 47 is
processing an NJE job header or trailer, a 0 is
passed as the address.

X047SIZE Indicates the length of the $XPL parameter list for
Exit 47.

2-10 Not applicable to Exit 47
11 Address of the $HCT
12 Not applicable to Exit 47
13 Address of the spool offload or networking $PCE
14 Return address
15 Entry point address of Exit 47

Register contents when exit 47 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents

0 Not applicable to Exit 47

Exit 47

Exit 47: Modifying an NJE data area before receiving the rest of the NJE job 267

1 Address of the $XPL parameter list which has the following
structure:

X047IND Condition byte

X047COND Response byte

X047RESP Indicates the processing Exit 47 determined JES2
should perform after processing the NJE data area.
A value of:
v X047TERM indicates Exit 47 determined the NJE

data area should not be received. JES2 will stop
processing the rest of the NJE job.

2-13 Not applicable to Exit 47

14 Return address

15 Exit effector return code

A return code of:

0 Indicates JES2 should continue processing the job.

4 Indicates JES2 should continue processing the job, but ignore any
additional exits associated with this exit.

Coded example
Module HASX47A in SYS1.SHASSAMP contains a sample of Exit 47.

Exit 47

268 z/OS V1R4.0 JES2 Installation Exits

Exit 48: Subsystem interface (SSI) SYSOUT data set
unallocation

Function
This exit gives control to installation exit routines during unallocation of sysout data
sets. This exit is taken later in processing than exit 34. When this exit is taken, all
the characteristics have been merged from the SSOB into the PDDB. Through this
exit, an installation can control whether JES2 will spin the SYSOUT data set.

Unlike installation exit 34, which is taken once for an unallocation, installation Exit
48 is taken once for each PDDB associated with an unallocation.

Environment

Task
User address space. You must specify USER on the ENVIRON= parameter of the
$MODULE macro.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
Exit 48 receives control in supervisor state with a PSW key 0.

Recovery
ESTAE recovery is in effect. However, as with every exit, your exit routine should
not depend on JES2 for recovery. JES2 cannot anticipate the exact purpose of your
exit routine and can therefore provide no more than minimal recovery. Your exit
routine should provide its own recovery.

Job exit mask
Exit 48 is subject to suppression. You can suppress Exit 48 by either implementing
exit 2 to set the 48th bit in the job exit suppression mask (JCTXMASK) or by
indicating the exit is disabled in the JES2 initialization stream.

Mapping macros normally required
$HASPEQU, $HCCT, $IOT, $MIT, $PDDB, $SDB, $SJB, JFCB, ,$JCT, $JCTX

Point of processing
This exit is taken from HASCDSAL after JES2 has merged the characteristics from
the SSOB into the PDDB.

Programming considerations
1. Job mask suppression is in effect for this exit.

2. Bit 7 of the response byte is set based on the setting of SSALSPIN in the
SSOB: If SSALSPIN is on, bit 7 is set on. If SSALSPIN is off, bit 7 is set off.

© Copyright IBM Corp. 1988, 2002 269

3. By examining the setting of bit 7 in the response byte and the setting of
IOT1SPIN in IOTFLG1, you can determine if the data set was originally
allocated as spin and how it was unallocated:

Bit 7 IOT1SPIN JES2 DATA SET

on on Spins the data set The application allocated the data set as
spin.

on off Spins the data set The application allocated the data set as
non-spin (either DALCLOSE was not set in
dynamic allocation or FREE=CLOSE was
not specified on the DD statement). The
application used dynamic allocation to
unallocate the data set.

off on Does not spin the
data set

The application allocated the data as spin
but the task terminated before closing the
data set.

off off Does not spin the
data set

The application allocated the data set as
non-spin and the data set remains non-spin.

4. Expanding the JCT Control Block

If the $JCT address is contained in field SJBJCT, you can add, expand, locate, or
remove extensions to the job control table ($JCT) control block from this exit using
the $JCTX macro extension service. For example, you can use these extensions to
store job-related information. For more information, see z/OS JES2 Macros

Register contents when exit 48 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 0
1 Pointer to a 24-byte parameter list with the following structure:

Byte 1 (+0) Type of data set indicator
12 SYSOUT data set

Byte 2 (+1) This byte is not part of the programming interface.

Byte 3 (+2) Response byte
bits 0-6 These bits are not part of the

programming interface
bit 7 0 – Do not spin the data set.

1 – Spin the data set. For more
information, see “Programming
considerations” on page 269

Byte 4 (+3) This byte is not part of the programming interface

Byte 5 (+4) SDB address.

Byte 9 (+8) SJB address.

Byte 13 (+12) JFCB address.

Byte 17 (+16) PDDB address.

Byte 21 (+20) IOT address
2-10 N/A
11 Address of HCCT

Exit 48

270 z/OS V1R4.0 JES2 Installation Exits

12 N/A
13 Address of the register save area
14 The return address
15 The entry point address

Register contents when exit 48 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0-14 Unchanged
15 Return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with this
exit, call the next consecutive exit routine. If no other exit routines
are associated with this exit, continue with normal processing,
which is determined by the particular exit point from which the exit
routine was called.

4 Tells JES2 that even if additional exit routines are associated with
this exit, ignore them; continue with normal processing, which is
determined by the particular exit point from which the exit routine
was called.

Coded example
Module HASX48A in SYS1.SHASSAMP contains a sample of Exit 48.

Exit 48

Exit 48: Subsystem interface (SSI) SYSOUT data set unallocation 271

272 z/OS V1R4.0 JES2 Installation Exits

Exit 49: Job queue work select - QGOT

Function
This exit allows you to gain control whenever JES2 work selection processing has
located a pre-execution job for a device. This includes work selected for JES2 and
workload management (WLM) initiators.

Exit 14, Job Queue Work Select - $QGET is not called for workload management
(WLM) initiator work selection. Use this exit to instruct JES2 to accept or not accept
such work. Exit 49 is generally easier to implement because it does not require that
you copy JES2 decision-making algorithms into your exit routine.

If this exit rejects the selected job, the JES2 job queue search routine ($QGET) will
continue to search for another job (JQE), which if found will cause this exit to again
receive control.

Note: Exit 49 is not called if:
v JES2 does not find a job
v Exit 14 already selected a job.

Environment

Task
JES2 main task. You must specify ENVIRON=JES2 on the $MODULE macro.

Your exit routine is called by the $QGET routine in HASPJQS, which JES2 uses to
acquire control of a job queue element (JQE).

The $QGET routine scans the appropriate queue for an element that:
v is not held
v is not already acquired by a previous request to the job queue service routines
v has affinity to the selecting JES2 member
v has independent mode set in agreement with the current mode of the selecting

member.

AMODE/RMODE requirements
RMODE ANY, AMODE 31

Supervisor/problem program
JES2 places Exit 49 in supervisor state and PSW key 1.

Recovery
The recovery that is in effect when $QGET is called is the same environment your
exit will assume. As with every exit, you should provide your own recovery within
the exit routine.

Job exit mask
This exit is not subject to job exit mask suppression.

© Copyright IBM Corp. 1988, 2002 273

Mapping macros normally required
$HASPEQU, $HCT, $JQE, $MIT, $PCE, $XPL

Point of processing
HASPJQS calls your exit routine with the address of the JQE that represents the
job selected by the $QGET routine. Your exit routine has opportunity to examine
this JQE and return to JES2 with the indication to select it for further processing or
reject it.

Programming considerations
1. $WAIT is not allowed in EXIT49.

Register contents when exit 49 gets control
The contents of the registers on entry to this exit are:

Register Contents
0 Not applicable
1 Parameter List Address having the following structure:

Field Name
XPLID Eyecatcher (’$XPL’)
XPLLEVEL Maintenance Level
XPLXITID Version Number
X049VERN Parameter list version
X049XID Exit 49 ID
X049IND Indicator byte
X049COND Condition byte:
X049RESP Response byte
X049SKIP Do not select this JQE
X049NOPT Disallow initator job selection optimization

CAUTION:
Turning on this flag may cause performance
degradation.

X049SIZE Length of parameter list
X049JQE Address of the JQE
X049QGT Address of the QGET parameter list having the

following structure:
+0 (word 1) Address of the node table
+4 (word 2) Address of control block

v PIT – if INWS
v DCT – if OJTWS or OJTWSC

+8 (word 3) Address of class list (if applicable)
+12 (word 4) Address of the JQE
+16 (word 5) each byte is set as follows:

+16 Length of the class list
+17 Queue type (refer to the

$QGET macro description
for a list of these) This byte
is set to ‘00’ for queue
types INWS, OJTWSC, and
OJTWS. Byte 18 (the type

Exit 49

274 z/OS V1R4.0 JES2 Installation Exits

flag) is used to differentiate
between these three queue
types.

+18 Work selection type flag
+19 This byte is not part of the

interface
2-10 Not applicable
11 Address of the HCT
12 Not applicable
13 Address of the save area
14 The return address
15 The entry address

Register contents when exit 49 passes control back to JES2
Upon return from this exit, the register contents must be:

Register Contents
0 - 14 Unchanged
15 A return code

A return code of:

0 Tells JES2 that if additional exit routines are associated with the
exit, call the next consecutive exit routine. If no other exit routines
are associated with this exit, continue with normal processing.

4 Tells JES2 that even if additional exit routines are associated with
the exit, ignore them; continue with normal processing. Set bit
X049SKIP in the response byte to cause JES2 to select another
job.

Coded example
None provided.

Exit 49

Exit 49: Job queue work select - QGOT 275

276 z/OS V1R4.0 JES2 Installation Exits

Appendix A. JES2 exit usage limitations

The following table notes those instances when reader and converter exits (Exits 2,
3, 4, 6, and 20) are invoked or not invoked. Be certain to consider this information
when attempting to implement these exits.

Table 9. Reader and Converter Exits Usage

Exits Taken for Input Services Converter

Source of Job 2 3 4 20 6

Job from local reader Y Y 1 Y Y Y

Job from remote reader Y Y 1 Y Y Y

TSO session logon (TSU) Y Y 1 Y Y Y

TSO submitted job Y Y 1 Y Y Y

Started task Y Y 1 Y Y Y

Job with /*ROUTE XEQ Y Y 1 Y Y N

Job following /*XMIT JECL or //XMIT
JCL

N N N N N

Job from NJE job receiver:

Job for this node Y Y 1 Y Y Y

Store and forward N N N Y N

Job from NJE SYSOUT receiver:

Job for this node N N N N N

Store and forward N N N N N

Job internally generated by JES2
(SYSLOG-RMTMSG)

N N N N N

Spool offload job receiver 2 Y Y 1 Y Y Y

Spool offload SYSOUT receiver N N N N N

XBM invocation Y Y 1 Y Y Y

Special Case JCL and JECL

JCL from cataloged procedure NA NA N NA Y

//*COMMENT cards Y NA Y NA NA

/*PRIORITY statements NA NA Y NA NA

/*$command statements 3 NA NA Y NA NA

/*end of SYSIN data NA NA N NA NA

//null statements NA NA N NA NA

Generated DD*statement NA NA Y NA NA

/*with invalid verb NA NA Y Y NA

//with invalid verb NA NA Y Y NA

/*EOF internal reader NA NA N NA NA

/*DEL internal reader NA NA N Y N

/*PURGE internal reader NA NA N Y N

/*SCAN internal reader NA NA N NA N

Where Y = Exit is invoked, N = Exit is not invoked, and NA = Not applicable

© Copyright IBM Corp. 1988, 2002 277

|
|
|||||

Table 9. Reader and Converter Exits Usage (continued)

Notes:

1. Exit 3 is taken only if ACCTFLD=REQUIRED or OPTIONAL is specified on the JOBDEF
initialization statement. Exit 3 will be taken even if there is no accounting information
provided on the JOB statement.

2. This may be the second (or more)pass through these exits for this job

3. Commands must be outside of a job;they will invoke Exit 4 but will not have a JCT
(R10=0).

278 z/OS V1R4.0 JES2 Installation Exits

Appendix B. Sample code for exit 17 and 18

The following is code that your installation can include in installation exits 17 and 18
to remove blanks from the remote workstation identifier on the RJE signon cards.

Col 72
|
v

X1718 $MODULE ENVIRON=JES2,TITLE=’JES2 EXIT 017 - $MODULE’, X
$CADDR, JES2 Common Address Table X
$HASPEQU, JES2 Equates X
$HCCT, JES2 Common Communications Table X
$HCT, JES2 Control Table X
$HFAME, JES2 File Allocation Map Entry X
$MIT, JES2 Module Information Table X
$MITETBL, JES2 MIT Entry Table X
$PADDR, JES2 Private Routine Address Table X
$PARMLST, JES2 Parameter list X
$PCE, JES2 Processor Control Element X
$PSV, JES2 Prefix Save Area X
$SCAT, JES2 Sysout Class Attribute Table X
$USERCBS, User Control Blocks X
$XECB JES2 Extended ECB

X17DBLNK $ENTRY CSECT=YES,BASE=R12 Establish entry point
SPACE 1

$SAVE Save caller’s registers
LR R12,R15 Save base address
SLR R6,R6 Preset return code
LTR R0,R0 Is this the first call for signon?
BNZ X17RET No, return now
EJECT

**
* *
* The card image passed to this routine by JES2 will *
* always have a blank after the characters ’/*SIGNON’. *
* *
**

SPACE 1
L R2,12(,R1) Point to the signon card
LA R2,15(,R2) Point to remote number portion
SPACE 1

© Copyright IBM Corp. 1988, 2002 279

**
* *
* Now get past the ’RMT ’ or ’R ’. *
* *
**

SPACE 1
SLR R7,R7 Zero number of blanks found
LA R5,L’X17FIELD Get max length of remote field
LA R4,L’X17REMOT Assume that it is ’REMOTE’
CLC X17REMOT,0(R2) Does it start with ’REMOTE’?
BE X17FNUM Yes, go process the number
LA R4,L’X17RMT Assume that it is ’RMT’
CLC X17RMT,0(R2) Does it start with ’RMT’?
BE X17FNUM Yes, go process the number
LA R4,L’X17RM Assume that it is ’RMT’
CLC X17RM,0(R2) Does it start with ’RM’?
BNE X17RET No, can’t do anything with it

X17FNUM LA R2,0(R4,R2) Point to character after remote
SR R5,R4 Get count of numbers in field
LR R4,R5 Save number of numbers
LR R3,R2 Save start of number portion

X17LOOP CLI 0(R2),C’ ’ Is the next char a blank?
BNE X17SKWSH No, all done
LA R7,1(,R7) Increment number of blanks found
LA R2,1(,R2) Point to next character
BCT R5,X17LOOP And continue de-blanking
B X17RET No numbers, all blanks
EJECT

280 z/OS V1R4.0 JES2 Installation Exits

**
* *
* Move the characters over and then fill the rest of the *
* remote number portion of the field with blanks. *
* *
**

SPACE 1
X17SKWSH LTR R7,R7 Were any blanks found?

BZ X17RET No, line is OK
SR R4,R7 Get number of numbers
BCTR R4,0 Less one for execute
EX R4,X17MOVE1 Move the characters over
LA R3,1(R4,R3) Point past numbers
BCTR R7,0 Less one for execute
EX R7,X17MOVE2 Blank out remaining characters
SPACE 1

X17RET $RETURN RC=(R6) Return to the caller
EJECT

**
* *
* Executed statements and storage areas *
* *
**

SPACE 1
X17MOVE1 MVC 0(*-*,R3),0(R2) Squish out those blanks
X17MOVE2 MVC 0(*-*,R3),X17BLANK Squish out those blanks

SPACE 1
X17BLANK DC CL9’ ’
X17FIELD DC C’REMOTE999’
X17REMOT DC C’REMOTE’
X17RMT DC C’RMT’
X17RM DC C’RM’

* *
* LITERAL POOL *
* *

SPACE 1
LTORG ,
SPACE 1

$MODEND ,
END

Appendix B. Sample code for exit 17 and 18 281

282 z/OS V1R4.0 JES2 Installation Exits

Appendix C. Job-related exit scenarios

This appendix identifies the JES2 job-related exits. It also describes the relationship
between the JES2 $JCT and MVS/SP JMR blocks and provides an overview of the
security access service.

Examples of exits that are not job-related are exits such as those taken during
JES2 initialization, JES2 termination, RJE sign-on, JES2 command processing, and
other functions not necessarily related to individual jobs 2.

Job-related exits fall into two categories: specific purpose and general purpose. A
specific purpose job-related exit is one that provides a specific function. Although, it
may be used for other purposes such as a compromise to avoid in-line
modifications.

Examples of specific-purpose job-related exits are job output overflow (Exit 9) and
spool partitioning exits(Exits 11 and 12). These exits are used in controlling output
limits and spool allocation (fencing) for a particular job. Because these exits do not
occur at predictable intervals during the life of a job, using them for a general
purpose is not appropriate.

General-purpose job-related exits are exits such as the job statement scan exit (Exit
2), converter internal text scan exit (Exit 6), and the control block read/write exits
(Exits 7 and 8). These exits are usually considered when there is a user
requirement to control installation standards, job resources, security, output
processing, and other job-related functions.

Often the use of more than one exit is required and sometimes combinations of
JES2 and other exits such as Systems Management Facilities (SMF) exits must be
used. Table 10 on page 284 lists the exits that are discussed. They are not all of the
job-related exits but possibly enough to make a decision as to which exits to
choose to control certain processes or functions during the life of a job.

Exit sequence
There are two major considerations when selecting an exit to satisfy a user
requirement:

1. The environment of the exit -

The address space, TCB (task), storage key, data areas that are addressable,
and facilities are available at the time the exit is taken.

2. The sequence of the exits -

Which exits precede and which exits follow each other? What processing has
preceded and what processing follows the exit?

Selected exits
To provide a user-required function, two or more exits may be needed. In that case,
understanding the sequence of exits is important.

2. A job, in JES2 terminology, is anything represented by a Job Queue Element ($JQE). The name “job” is also used to describe job
output rather than the more specific term - spool data set. It is common for operators to say that a “job” is on the printer or a “job”
is printing. It would be awkward, but more accurate, to say that the data set or output group is printing.

© Copyright IBM Corp. 1988, 2002 283

Table 10 lists the selected exits that are included here for further discussion.

Table 10. Job-Related Exits

Exit Exit Title Comment

1 Print/Punch Separator Taken when a job’s data sets have been selected
for printing or punching, prior to the check for the
standard separator page.

2 JOB Statement Scan The first exit taken for a job and before the
statement is processed.

3 Job Statement
Accounting Field Scan

Taken after JOB statement has been processed.
Normally used to replace or supplement JES2’s
accounting field scanning routine (HASPRSCN),
but also used as a post job card exit.

4 JCL and JECL control
statement scan

Taken for each JCL and JECL statement
submitted but not for PROCLIB JCL statements.

6 Converter/Interpreter
internal text scan

A good exit for scanning JCL because of
structured text and single record for each
statement (no continuation).

7 $JCT Read/Write (JES2
environment)

Receives control when JES2 maintask reads or
writes the $JCT.

8 Control Block Read/Write
(User or Subtask
environment)

Taken from the user address space or a JES2
subtask each time a spool resident control block
($JCT, $IOT, $SWBIT, $OCR) is read from or
written to spool.

15 Output Data Set/Copy
Select

Taken once for each data set where the data set’s
$PDDB matches the selected Job Output Element
($JOE) and once for each copy of these data sets.

20 End of Job Input Taken at the end of input processing and before
$JCT is written. This is usually a good place to
make final alterations to the job before conversion.

28 SSI Job Termination Taken at the end of job execution before the $JCT
is written to spool.

30 SSI Data Set
Open/Restart

Taken for SYSIN, SYSOUT, or internal reader
Open or Restart processing.

31 SSI Allocation Taken for SYSIN, SYSOUT, or internal reader
Allocation processing.

32 SSI Job Selection Taken after all job selection processing is
complete.

33 SSI Data Set Close Taken for SYSIN, SYSOUT, or internal reader
Close processing.

34 SSI Data Set Unallocate -
Early

Taken for SYSIN, SYSOUT, or internal reader
Unallocate processing. This exit is taken early in
Unallocation. You may want to consider Exit 48
(late unallocation) when modifying SYSOUT
characteristics.

35 SSI End-of-Task Taken at end of each task during job execution.

36 Pre-SAF Taken just prior to JES2 call to SAF.

37 Post-SAF Taken just after the return from the JES2 call to
SAF

284 z/OS V1R4.0 JES2 Installation Exits

Table 10. Job-Related Exits (continued)

Exit Exit Title Comment

40 Modifying SYSOUT
characteristics

Taken during OUTPUT processing (HASHOPE or
HASPSPIN) for each SYSOUT data set before
JES2 gathers data sets with like attributes into a
$JOE.

44 Post Conversion -
Maintask

Taken in maintask environment after job
conversion processing and before the $JCT and
$JQE are checkpointed

46 NJE Transmission Taken for NJE header, trailer, and data set header
during NJE job transmissions.

47 NJE Reception Taken for NJE header, trailer, and data set header
during NJE job reception.

48 SYSOUT Unallocation -
Late

This exit can be used as an alternative to Exit 34
(early allocation). It is more suitable when
modifying SYSOUT characteristics or affecting
SPIN processing. When modifying SYSOUT
characteristics in Exit 34, subsequent JES2
processing can override changes made to the
$PDDB in the exit. If processing is required earlier,
use Exit 34.

49 Job Queue Work Select -
QGOT

This exit allows you to gain control whenever
JES2 work selection processing has located a
pre-execution job for a device. This includes work
selected for JES2 and workload management
(WLM) initiators.

IEFUJV SMF Job Validation Receives control for each JCL statement and at
the conversion end from the converter subtask.
IEFUJV receives control from the user’s address
space after all JCL is interpreted.

IEFUJI SMF Job Initiation Taken at job initiation after the $JCT has been
checkpointed and before SMF exit IEFUSI.

IEFUJP SMF Purge Taken from subtask in JES2 address space after
job is purged.

IEFUSI SMF Step Initiation Taken just after SMF exit IEFUJI for the first step
of a job. Also taken again at the beginning of each
subsequent step.

IEFACTRT SMF Termination Receives control at job and step termination and
for the creation of SMF type 5 and 35 records.

SPOOL control blocks
It’s important to understand the status of any control block to be referenced or
altered in a user exit. Control blocks associated with a job may not always be in
storage. However, all job-related control blocks are written to either the checkpoint
data set or a spool data set. This is done to:

v Allow warm starts after JES2 termination.

v Make control blocks accessible to all sharing members of a multi-access spool
complex.

v Provide recovery in case of a system failure.

Appendix C. Job-related exit scenarios 285

Sometimes job-related control blocks are just read and not written (if they are not
altered) but are always written after they are created and after they have been
altered. The job-related control blocks that reside on spool are:

v $JCT - Job Control Table

v $IOT - I/O Table (contains spool track allocation and spool data set information)

v $OCT - Output Control Table (contains Output Control Records (OCRs) which are
used for /*OUTPUT JECL parameters)

v $SWBIT - SWB Information Table (contains Scheduler Work Blocks used by //
OUTPUT JCL)

v $CHK - Checkpoint record for local, RJE and FSS printers.

Checkpoint control blocks
If you write code for JES2 exits that access and update checkpoint control blocks,
you need to review this section and apply this information along with those specific
″Programming Considerations″ described for the JES2 exit that you are
implementing. You need to be aware of the types of JQE/JQAs that JES2 provides
to your exit, since JES2 processes these JQE/JQAs in differing ways. The types
are:

v A real JQE. Your exit receives a read or update mode JQE/JQA.

v A read-mode JQA. Your exit receives an artificial JQE that is a temporary block
of storage. This storage contains:

– Almost the same information as the real JQE.

– Information from the JQX (new in Version 2 Release 4).

– Information from BERTs (another checkpointed area).

v An update-mode JQA. Your exit receives an artificial JQE that is a temporary
block of storage. This storage is similar to the read-mode JQA. JES2 ensures the
integrity of this JQA and manages the storage each JQA occupies.

v A work area containing a prototype JQE. In certain circumstances, your exit may
be passed the address of a work area that contains a working copy of a JQE.
See Exit 47 for more information about this.

Exits normally want to use JQEs in read mode (data is extracted or pointed to when
calling service routines) or in write mode (data in the JQE is modified). JES2 exit
writers need to take the following actions when using a particular JQE/JQA as the
JQE= keyword value on the $DOGJQE macro:

v If the JQE is needed only to access data and that data is within the bounds of
the original real JQE, then only the address of the real JQE is needed.
Regardless of what IBM has provided as the JQE address, use the following
action to get the address of the real JQE:
$DOGJQE ACTION=GETJQEADDR,CBADDR=jqe

v If the JQE is needed only to access data and that data is beyond the bounds of
the original real JQE (that is, it is stored in fields where the first three characters
of the field name are other than JQE), then a read mode JQA is needed.
Regardless of what IBM has provided as the JQE address, use the following
action to get the address of a read mode JQA. The address of the read mode is
passed back (in R0).
$DOGJQE ACTION=(FETCH,READ),JQE=jqe

v When you are finished, use the following action to free the memory used for the
JQA (x is the address returned from the first $DOGJQE call):
$DOGJQE ACTION=RETURN,CBADDR=x

286 z/OS V1R4.0 JES2 Installation Exits

v If the JQE is needed in write mode (the fields to be changed are either within the
bounds or not within the bounds of the original JQE), use the following action to
get the address of an update mode JQE, regardless of what IBM has provided as
the JQE address. The address of the JQA is passed back (in R0). Make all
changes to fields in the update mode JQA.
$DOGJQE ACTION=(FETCH,UPDATE),JQE=jqe

v When you are finished, use the following action to free the memory used for JQA
(x is the address from the first $DOGJQE call) and to ensure that the changes in
the JQA get propagated to the real JQE, the JQX, and the BERT area.
$DOGJQE ACTION=RETURN,CBADDR=x

When your exit returns a JQE/JQA to the JES2 systems through these actions,
certain errors can occur if JES2 determines that what your exit has returned is not
consistent with what JES2 knows to exist. JES2 uses the $ERROR macro and
issues the following errors:

v DJ1– non-IBM code returned an IBM JQE/JQA that violates the consistency
checks of JES2.

v DJ2– IBM code returned a non-IBM JQE/JQA that violates the consistency
checks of JES2.

Note:

v You are encouraged to disregard the kind of JQE/JQA passed to your exit
and always do the following:

– To obtain the address of the real JQE (for example, your exit wants to
compute the offset of the JQE), use:
$DOGJQE ACTION=GETJQEADDR

– To obtain the address of a read mode JQE/JQA (for example, your exit
wants to examine the MAXCC field), use:
$DOGJQE ACTION=(FETCH,READ)

– To obtain the address of an update mode JQE/JQA (for example, your
exit wants to change the SYSAFF or PRIORITY or MAXCC), use:
$DOGJQE ACTION=(FETCH,UPDATE)

v If you are writing exit 47, do not use $DOGJQE to access a JQE/JQA.

There are two major considerations based on where the control block is to be
written. Job-related checkpoint-resident control blocks - $JQEs and $JOEs are
always resident in storage (JES2 address space - extended common). However
they are not always at the current level. Because the checkpointed queues are
shared with other members of a multi-access spool complex, serialization must be
obtained with the $QSUSE macro (or in the case of JQEs, the $DOGJQE macro).
The $QSUSE macro places the exit routine in a $WAIT until the checkpoint is
owned (HELD) by the executing member thus ensuring exclusive control of the
checkpoint.

If any alteration is made to a $JOE, the following rules apply:

1. Only maintask routines can serialize the checkpoint.

2. The $QSUSE macro must be used to insure ownership of the checkpoint. This
macro may have already been issued by JES2 before the exit as in the case of
Exit 14 and need not be issued unless the exit has issued a $WAIT (implied or
explicit).

3. Alterations to the $JOE can be made as long a $WAIT is not issued.

Appendix C. Job-related exit scenarios 287

4. The $CKPT macro must be issued immediately after the alteration (before a
$WAIT or implied $WAIT) to ensure that the altered copy of the control block
gets written the checkpoint data set before JES2 releases control of the
checkpoint.

5. For performance reasons, the processing between the $QSUSE and the $CKPT
should be kept to a minimum.

$JCT/JMR relationship
The MVS Job Management Record (JMR) is initialized as part of the JES2 $JCT
when the $JCT is built by HASPRDR.

Additionally, the following information should help in the understanding of the $JCT
and JMR relationship:

v SMF documentation references to the Common Exit Parameter Area (CEPA)
which is actually the MVS JMR.

v During the Conversion, Execution, and Purge phases of JES2, the JMR is built
by copying the JMR section of the JES2 $JCT into the MVS JMR.

v At the end of the Conversion and Execution phases of JES2, the MVS JMR is
copied back into the $JCT. Any alterations to the JMR is therefore checkpointed
along the JES2 $JCT.

v The CEPA User-Communication field (defined as JMRUCOM in the JMR) could
be used to provide addressability to the JES2 $JCT for SMF exits.

v There is a MVS Job Control Table (JCT). It’s built by MVS and used during
execution by MVS. and has nothing to do with the JES2 JCT.

The following table, Table 11, displays a side-by-side label comparison of the JMR
(CEPA) and the JES2 $JCT/JMR areas.

Table 11. $JCT/JMR Definitions

$JCT Label JMR Label Length Field Description

JCTJMRJN JMRJOB 8 characters 8-character job name from JOB JCL
statement

JCTRDRON JMRENTRY 4 bytes Time, in hundreds of second, on Input
processor

JCTRDTON JMREDATE 4 bytes Date on Input processor in form of
00YYDDDF

JCTCPUID JMRCPUID 4 bytes SMF SYSID

JCTUSEID JMRUSEID 8 characters Initialized to blanks by JES2

JCTSTEP JMRSTEP 1 byte Current step number

JCTINDC JMRFLG 1 byte SMF options

JCTJTCC
JCTCLASS

JMRCLASS 2 bytes Byte 1 is condition code and second byte
is execution job class

JCTUCOM JMRUCOM 4 bytes User communication area - initialized to
zeros by JES2

JCTUJVP JMRUTLP 4 bytes User time limit exit routine

JCTRDROF
JCTRDTOF

JMRDRSTP 8 bytes First word is time off input process and
second word is date off input process

JCTJOBIN JMRJOBIN 4 bytes Job’s SYSIN count

JCTRDR JMRRDR 2 bytes Reader device type and class

288 z/OS V1R4.0 JES2 Installation Exits

Table 11. $JCT/JMR Definitions (continued)

$JCT Label JMR Label Length Field Description

JCTJMOPT JMROPT 1 byte SMF option switches

(none) (none) 1 byte Reserved

Input phase
The JES2 input service exits provide the functions needed to receive all
pre-execution batch jobs, started tasks, and time sharing sessions into the system.
There are special cases, as outlined in “Job input sources”, where some
(non-batch) jobs bypass input service.

Many installations use input service exits to control installation standards, tailor
accounting information, and provide additional security controls.

Job input sources
Figure 12 shows The possible sources of jobs entered into JES2. Each of the input
sources (known internally as devices) is represented by a Processor Control
Element ($PCE) and a Device Control Table ($DCT). The $PCE is the dispatchable
element used by the JES2 dispatcher and the $DCT contains the device (input
source) information.

When designing input service exits, be aware that jobs can be entered from a
number of input sources. Consider whether the source of a job could affect the exit
processing. For example, in the case of a spool offload job receiver, an individual
job could be submitted more than once. This could be an important consideration if
the purpose of the exit is to add a JCL or JECL statement. A test for a spool offload
device ($DCT) may be in order to see if the additional statement already exists.
Also, some exit-provided functions may not apply to all job sources. For example,
you might want to bypass started tasks or time sharing sessions when enforcing
installations standards. When using spool offload to selectively reload jobs, Exits
2-3-4 will be taken even for jobs that are not selected. This is because the work
selection takes place after the JCL has been received.

TSO Submit

TSO Internal Internal STC Internal

RJE NJE Job Spool Offload Card

HASPRDR

Job/STC/TSU

Reader Reader

Rnnnn.RD1 Receiver Job Receiver

Reader

Figure 12. Job Input Sources

Appendix C. Job-related exit scenarios 289

There are jobs ($JQEs) that do not originate through input service, for example, the
system log ($SYSLOG), the JES2 trace facility ($TRCLOG), and remote message
spooling ($RMTMSG) that are created internally and do not have JCL associated
with them. Additionally, there are jobs created for NJE and spool offload SYSOUT
receivers and NJE store-and-forward jobs. These are also specially created jobs
that do not go through input service and therefore input service exits are not taken
for these special jobs.

Job input service processing
The following scenario describes the exits and the sequence of exits for a normal
batch job entered through JES2 input service.

Table 12. Job Input Service Exits

Step Processing Exit Used

1 If the job source is a NJE job receiver or a spool offload job
receiver (reload), Exit 47, the NJE header exit, is processed
before Exit 2. For all other job sources, Exit 2 will be the first
exit to be taken.

47

2 A job statement is read and the $JCT is initialized. Exit 2 has
control prior to the actual scanning of the job statement. You
can set the job defaults, the spools allowed mask (fencing), and
the job exit mask (to prevent certain future exits to be taken).
You may also control the message class of a job at this time.

The job statement has not been processed. To control or
override statement parameters, change either the actual
parameter in the buffer or, choose a later exit to alter field in
the control block after the job statement scan is complete. For
each JOB continuation statement, an additional Exit 2 is taken
with a value of 4 in general register 0

2

3 After the job and job continuation statements have been
processed, a spool track is obtained using $TRACK and Exit
11.

11

4 An $IOT is initialized, and the spool control blocks ($JCT and
$IOT) are written to spool. Exit 7 is taken.

7

5 Exit 3 processes accounting information. The job statement has
already been written to the spool JCL data set. Therefore, it is
too late to alter the accounting information passed to the MVS
Converter. To alter accounting information , use HASPRSCAN.

3

6 Exit 4 processes submitted JCL, JCL continuation, and JES
control statements (JECL). JCL residing in PROCLIB is not
processed. To process all JCL, use SMF exit IEFUJV or Exit 6.
Exit 4 processes all JECL (/*), with the exception of internal
reader control statements (such as /*EOF, /*DEL, etc.).

4

7 Exit 2 is taken. After Exit 2, the NJE header validation routine is
taken to verify the structure of the network job trailer and
indicate the end of the job.

2

8 If the input device is an NJE Job Receiver, Exit 47 is taken for
the network job trailer. Exit 47 can be used to:

v Reject the job (and hold it at the transmitting node)

v Accept the job (and add or remove sections of the NJE
header).

47

290 z/OS V1R4.0 JES2 Installation Exits

Table 12. Job Input Service Exits (continued)

Step Processing Exit Used

9 After all the submitted JCL and JECL have been processed for
a job, SAF calls are made to verify the job. Six additional SAF
calls are made to process system generated spool data sets
(joblog, job messages, JCL, etc.). For each SAF call, Exits 36,
37 are taken. The SAF router exit (ICHRTX00) is also taken.

36
37
ICHRTX00

10 After all of the job’s submitted JCL and JECL have been
processed, and end of file (EOF) condition causes control to be
passed to the end of job processing, Exit 20 is taken. Exit 20
allows final changes to the job without the exposure of further
job JCL and JECL alterations. The final write of the $JCT and
$IOT to spool follows Exit 20.

The $JQE has not been checkpointed so you can make
changes affecting the $JQE. You can make changes to job
class and job priority and JES2 will propagate the changes to
the $JQE. To change other fields, such as JQEJNAME which
require the alteration of the $JQE, use the $DOGJQE service to
obtain an update mode JQE. When the updates are complete,
use the $DOGJQE service to return the updated JQE.

20

11 Exit 7 is taken again when the $JCT and $IOT are written to
spool. The $JQE is moved from the input queue to the
conversion queue and checkpointed. If an error occurs, the
$JQE is placed on the output queue or purge queue and
checkpointed. Exit 7 could be used to create an installation
defined spool-resident control block. The headers are kept in
separate SPOOL buffers with their address pointers in the
$JCT.

The $JCTX macro extension service allows you to add, expand,
locate, and delete $JCT extensions. These extensions can be
used to store job-related accounting information that can be
copied throughout a network.

7

Conversion phase
The conversion phase of JES2 processing is accomplished in two environments.
First the Converter Processor Control Element ($PCE) is dispatched in the JES2
maintask environment to select a job from the input queue. Secondly, the Converter
subtask, after being posted by the Converter maintask, calls the MVS Converter to
do the actual conversion (JCL to C/I text). The reason for the subtask environment
is that the conversion process requires the reading of the JCL data set from spool,
reading JCL from PROCLIB, writing JCL images to spool, and the writing of C/I text
to spool. These I/O operations cannot be accomplished in the maintask
environment.

It’s important to understand the difference in these two environments when
considering exit usage. Exit 7 executes in the maintask environment, and Exit 6,
and the SMF IEFUJV exit, execute in the subtask environment. If maintask
functions are needed for a subtask exit, it may be necessary to use two exits, for
example Exits 6 and 44 in conjunction, to provide a specific function.

Another important consideration is that there can be (and usually are) more than
one converter processor (and subtask) and therefore, any exits taken in the subtask
(Exits 6 and exit, IEFUJV) must be MVS reentrant. The following scenario describes

Appendix C. Job-related exit scenarios 291

the processing that occurs during the conversion processing.

Table 13. Conversion Phase Processing

Step Processing Exit Used

1 A job is selected from the input queue, and the job’s $JCT is
read from spool. Exit 7 is invoked with a value of zero in
general register zero (R0=0). The Daughter Task Element
(DTE) is initialized and the Converter subtask is POSTed.

7

2 The JES2 conversion subtask locates the job’s $PDDBs (JES2
Peripheral Data Definition Blocks) and Fake Opens the ACBs
(Access Control Blocks) for internal text, job log, system
messages, JCL, and JCL images data sets. The Converter
subtask LOADs the MVS Converter, if the Converter has not
already been loaded. Exit 8 is taken for reading the $IOTs from
spool.

8

3 The Security Access Service ($SEAS) macro calls the Security
Authorization Facility (SAF) to build the security environment in
case the jobstream contains MVS commands which if present,
would be issued by the Converter using the Command SVC.
The userid associated with the command would be the user’s,
not JES2. As a result of the $SEAS call, Exits 36 and 37 are
called.

36
37

4 For each JCL image, SMF exit IEFUJV (entry codes 0, 4, 8,
and 64) is taken. This includes continuation statements.
IEFUJV is called once more with an entry code of 16.

SMF exit
IEFUJV

5 After the statement and all continuation statements have been
converted into C/I text, the Converter exit, XTXTEXIT is called
to provide spool data set names for SYSIN and SYSOUT JCL
statements. If the statement represents a SYSIN data set, a
$SEAS call is made to audit the creation.

XTXTEXIT

6 After the spool data set names have been generated (if SYSIN
or SYSOUT) Exit 6 is invoked (R0=0) with the completed C/I
text statement as input to the exit.

6

7 At the completion of conversion and after the Converter returns
to the JES2 converter processor module, a $SEAS call is
issued to delete the security environment. Exit 6 (R0=4) is
taken again to allow final processing.

6

8 As a result of the $SEAS call, Exits 36 and 37 are called. 36
37

9 Exit 8 is taken to write the $IOTs. The JES2 converter
processor module subtask POSTs its maintask and WAITs for
the next job.

8

10 Exit 44 is taken to allow user modifications that require the
maintask environment. Using the $DOGJQE macro you can
access and optionally update fields in the JQE.

44

11 The JES2 converter processor module maintask checkpoints
the $JCT, invokes Exit 7, and queues the $JQE to the
execution job queue.

7

The conversion phase offers the only chance to have exit control over all of a job’s
JCL. Although SMF exit, IEFUJV is taken for each JCL and JCL continuation
statement, JES2 Exit 6 offers some advantages.

292 z/OS V1R4.0 JES2 Installation Exits

First, the format of the C/I text is more structured. It is in parsed form and all major
syntax errors have been removed. This has all been done by the converter before
the exit gets control.

Another advantage of Exit 6 over IEFUJV is that once JCL statements have been
converted into C/I text, there are no continuation statements. That is, the entire JCL
statement, along with all continuation statements, are represented by a single C/I
text statement.

A SAF security environment exists within the subtask and can be used with the
RACF FACILITY class to control the specification of options within JCL. Exit 6,
messages can be returned to the Converter to be issued by the Converter.

Execution phase
This section attempts to merge those functions provided by a section of JES2 code
in the JES2 Job Select/Termination module known as “Job Selection” and the
pieces of MVS code known in the broad sense as “The Initiator”. The MVS Initiator
consists of many modules which perform job selection, allocation, and initiator
attach services (and others). JES2 Job Select also includes end-of-job functions.

For the purpose of this discussion, job selection is defined as the period, starting
with the initiator’s Subsystem Interface (SSI) call for job selection by class and ends
with the JES2 message, $HASP373 JOB STARTED . The following scenario
describes the processing that occurs during the Execution Phase.

Table 14. Execution Phase Exits

Step Processing Exit Used

1 The MVS Job Selection module issues a SSI call specifying
function code 5 which identifies the call to JES2 as a request to
select a job by class.

SSI calls with a function code of 5 are processed by the JES2
Job Select/Termination module. JBSELECT POSTs JES2
execution processing and WAITs for a job to be selected.

If a JES2 initiator is selecting work, JES2 calls Exit 14 to allow
the your installation to provide its own queue selection routine
or to tailor the selection request. Exit 14 is not a job-related
exit, that is, JES2 has not selected a job at this time. Exit 14
can select a job or it can tell JES2 to select a job. If a WLM
initiator is selecting work, JES2 does not call Exit 14.

After JES2 selects a job from the execution queue, it calls Exit
49 which can accept or reject the job. If Exit 49 rejects the job,
JES2 searches for another job. JES2 does not call Exit 49 if
Exit 14 selects a job.

If JES2 execution processing finds a job that matches the
Initiator’s defined job classes, it POSTs the waiting initiator and
provides the job’s $JCT spool address in the $SJB. If a job has
been found, control is given to the JBFOUND routine.

14

Appendix C. Job-related exit scenarios 293

Table 14. Execution Phase Exits (continued)

Step Processing Exit Used

2 The JBFOUND routine reads the job’s JES2 $JCT using the
spool address passed in the $SJB. Exit 8 is the first exit taken
out of the user’s (or job’s) address space after a job is selected.
This first entry to Exit 8 is taken after the job’s $JCT has been
read. The job name and job-id are available as well as all other
information in the $JCT.

If later SMF exits for this job need addressability to the JES2
$JCT, store the JES2 $JCT address (as contained in Exit 8
parameter list) into the JCTUCOM field that later becomes the
JMRUCOM.

8

3 Exit 8 is again taken to read the primary allocation $IOT. There
may also be additional calls to Exit 8 to read secondary
allocation $IOTs and/or $PDDB-only $IOTs based on the job’s
JCL. Exit 8 is called for all spool control block reads and writes.

JES2 allows installations to create extensions to the $JCT
where job-related accounting data can be stored and
transmitted through the network. Using the $JCTX macro
extension service, you can add, expand, locate, and delete
these extensions. For more information on using these
extensions, see z/OS JES2 Macros.

8

4 The JBFOUND routine calls the MVS SWA Create Control
module to obtains storage for and initialize the Interpreter Entry
List. The Interpreter Entry List contains information from JES2,
such as user ID and security information and is used for linking
to the MVS Interpreter.

Both JES2 and MVS have a data area named JCT. The two
JCTs are not similar and one is not a copy, or partial copy, of
the other. The Interpreter Entry List contains a pointer to the
in-storage copy of the beginning of the $JCT JMR area which is
used to create the CEPA/JMR.

The MVS Interpreter Initialization routine calls the MVS
Interpreter Router routine and after the internal text has been
interpreted, the MVS Enqueue routine issues the call to SMF
exit IEFUJV (entry code of 32). This is the first SMF exit for a
job during the execution phase. The Scheduler Work Area
(SWA) job and step tables have been created. The JMR
pointer, called the CEPA in SMF documentation, is provided in
the exit parameter list.

IEFUJV

5 After the Interpreter returns control to the MVS SWA Create
Control module, a RACROUTE
REQUEST=VERIFY,ENV=CREATE is then issued to create the
job’s security environment. The SAF Router exit is invoked if it
exists and Message ICH70001I is issued by RACF identifying
the user. If an error occurred during Job Select processing, for
example a JCL error, then the job’s security environment is not
created.

SAF Router
exit

6 Exit 32 is called. The $JCT, all $IOTs the JMR, and the ACEE
have been created and are available.

The JBSELECT routine then issues the $HASP373 JOB
STARTED message.

32

294 z/OS V1R4.0 JES2 Installation Exits

Table 14. Execution Phase Exits (continued)

Step Processing Exit Used

7 Before job select processing is complete and control returns to
the Initiator, JES2 checkpoints (writes to spool) the $JCT. Exit 8
is called.

8

8 Job initiation calls SMF exit, IEFUJI. MVS job initiation is a
series of calls to step initiation based on the number of steps in
a job.

IEFUJI

9 MVS step initiation consists of a call to SMF exit, IEFUSI, step
allocation for those data sets and devices defined in the job’s
JCL, and a call to the MVS Initiator Attach routine.

IEFUSI

10 Allocation of JCL defined SYSIN, SYSOUT, and internal readers
initiates a call to Exit 31.

31

11 The MVS Initiator Attach routine attaches a subtask with an
entry point of the program name specified on the EXEC JCL
statement for the job step. The job step could dynamically
allocate JES2 SYSIN, SYSOUT, or internal readers and
therefore Exit 31 can be called.

31

12 The OPEN and CLOSE of JES2 data sets and internal readers
call Exits 30 and 33.

30
33

13 Dynamic Unallocation of JES2 data sets and internal readers
initiate a call to Exit 34. Exit 48 can be used in preference to
Exit 34. Exit 34 may be too early to affect some fields in the
$PDDB because unallocation processing takes place after Exit
34. Use Exit 48 when altering fields in the $PDDB, this exit can
also be used to control Spin processing.

34

14 At End-of-Task (EOT) processing an SSI call is made to JES2
and Exit 35 is called.

35

15 Control is passed (return from Attach) to the MVS Initiator
Attach routine and subsequently MVS Step Delete calls Step
Unallocation which unallocates those data sets and devices
defined in the job’s JCL on a step basis. Exit 34 is called for
JCL defined SYSIN, SYSOUT, and internal readers. Exit 48 is
also taken as mentioned previously.

34
48

16 The MVS Unallocation routine calls the MVS SMF Control
routine which calls SMF exit IEFACTRT with entry codes 20
and 12. If additional job steps are to be processed, control is
passed back to step 8. Otherwise, control is passed to Job
Termination at step 17.

SMF exit
IEFACTRT

17 Job Termination (actually this is Step Termination for the last
step) again calls SMF exit IEFACTRT with entry codes 20 and
16. Control is then passed to MVS Step Delete where a SSI
call (12) is made for Job Termination.

IEFACTRT

18 End-of-job processing calls Exit 28. This exit can clean up
resources obtained over the life of job execution.

28

19 Spool control blocks are checkpointed. Exit 8 is taken for the
$JCT write. The $JQE is placed on the OUTPUT queue to
await output processing.

8

Appendix C. Job-related exit scenarios 295

Spin phase
Spin processing usually takes place during the execution phase, however because
of processing alternatives, which could occur during execution, the spin phase could
happen immediately after the execution phase, but always before the output phase.
Spin processing consists of processing the unspun queue and building Job Out
Elements ($JOEs) for each unspun spool data set.

The output phase follows the spin phase processing and is sometimes confused
with the hardcopy phase. Output phase processing scans the job’s $IOT chains and
if there are $PDDBs representing non-held output, these $PDDBs will be grouped
into $JOEs. Held output data sets are grouped into $JOEs which are the elements
representing output groups (spool data sets with like characteristics). $JOES are
queued by class in the Job Output Table ($JOT) and are ordered FIFO, within
priority, by route code.

After all $PDDBs have been assigned output groups the job’s $JQE is placed on
the hardcopy queue to await print, punch, transmission, or canceling of job output.
The following describes the Spin Phase processing.

Table 15. Spin Phase Processing

Step Processing Exit Used

1 After selecting a job from the $SPIN queue, the spin processor
scans through the $IOTs which represent unspun data sets.
When a unspun $IOT is found, Exit 40 gains control to allow
the installation to change the characteristics of the data set
before grouping the data set into an output group ($JOE).

40

2 A $#BLD macro is issued to build a $JOE and a $#ADD macro
is issued to add the $JOE to the $JOT.

3 The $QMOD macro queues the job ($JQE) to the OUTPUT
queue for processing.

Output phase
The following describes the Output Phase processing.

Table 16. Output Phase Processing

Step Processing Exit Used

1 The $QGET service searches the job queue to find a candidate
for output processing. Exit 14 ($QGET) is taken before a job is
selected so this is not a job-related exit.

14

2 Because there can be multiple output processors, the job lock
($GETLOCK) provides serialization on a job basis. When the
lock is obtained, the $JQE is checkpointed using the $CKPT
macro.

$CKPT
macro

3 After the job is selected and the job lock obtained, the job’s
$JCT is read from spool and Exit 7 is called.

7

4 If NOTIFY= was coded on the JOB JCL statement, NOTIFY
processing calls Exit 16. This exit, is conditionally based on the
job’s JCL parameter.

16

296 z/OS V1R4.0 JES2 Installation Exits

Table 16. Output Phase Processing (continued)

Step Processing Exit Used

5 After NOTIFY processing, the job’s $IOTs are read from spool,
$PDDBs are scanned, and the non-HELD $PDDBs are
assigned to $JOEs. HELD $PDDBs are also assigned to
$JOEs. $JOEs represent output groups, an output group can
represent one or more spool data sets with like characteristics.
Before each data set is grouped, Exit 40 is taken for each data
set. Any changes made to the $PDDB will be used to determine
data set grouping. Use Exit 40 to change SYSOUT
characteristics. (Exit 40 is taken before the data set has been
gathered into an output group ($JOE). After all non-HELD
PDDBs are processed, the $JCT is checkpointed. This is done
to update the spool-resident $JCT with alterations made during
output processing. After the $JCT is checkpointed, the job’s
$JQE is moved to the hardcopy queue to await printing or other
processing of job output. The $JQE is checkpointed after being
moved to the hardcopy queue.

40

Hardcopy phase
The hardcopy phase of JES2 processing takes place after output processing. The
job’s $JQE is placed on the hardcopy queue where it waits until all output is
processed.

To be processed, HELD data sets must be either released, canceled, or transmitted
(SPOOL Offload or NJE). All data sets are grouped into $JOEs. However, held data
sets are not eligible for hardcopy processing even though they are represented by
$JOEs. Since $JOEs are always resident in memory, the performance of held data
sets is improved.

A common misconception with JES2 users is that output is assigned to a printer or
output device. Output is only assigned to an output class and has other output
characteristics. Output devices, printers, punches, external writers, etc, select job
output from the output queues ($JOT or Job Output Table) by class and other
output characteristics. Output has no affinity to an output device, for example, a
printer. Output must be selected by the device based on the output data set
characteristics matching the device work selection (WS=) criteria. Route code is the
most common characteristic used to match job output with an output device.

This section discusses two types of hardcopy processing, JES2 controlled devices
and Print Services Facility (PSF) controlled devices. The JES2 Print/Punch
Processor module contains the necessary functional routines for controlling and
writing to JES2 output devices, both local and remote.

Only line mode printing is supported for JES2 devices. Page mode output data
must be processed by PSF. Printing to coax connected printers (printers attached
via 3174 and etc.), such as 3270 type printers (3276,), is not controlled by JES2.
Applications, such as JES/328X, are required to support these types of printers.

Appendix C. Job-related exit scenarios 297

The following describes the Hardcopy Phase processing.

Table 17. Hardcopy Phase Processing

Step Processing Exit Used

1 HASPPRPU initialization consists of assigning an available
output device and initializing control blocks and buffers as a
result of a Start command (e.g., $S PRT(5)).

2 Once an output device (either remote or local) has been started
a call is made to scan the output queues $JOT using the
$#GET macro. This is the work selection service which scans
the $JOT to search for output as specified in the work selection
parameter list.

Once an output group ($JOE) has been selected the job’s $JCT
is read from spool and Exit 7 is taken.

7

3 If the image subtask has not already been attached, it is done
now. A call is made for Exit 1 to allow installations to provide
their own separator routine. After Exit 1 (and based on Exit 1 if
it exists) the standard JES2 supplied separator page may be
produced.

The jobs $IOTs are read from spool and the $PDDBs
(contained within the $IOTs) are obtained. Setup is called to
check if device and data set characteristics match. Operator
intervention may occur here.

1

4 A call is made ($SEAS) to verify that the data set userid
(owner) is allowed to print on this device. Exits 36 and 37 are
taken.

36
37

5 Exit 15 (R0=0) is called for data set select. This exit point could
be used to control copy count, print translate table, or the CCW
translate tables.

15

6 Exit 15 (R0=4) is again called to allow user produced data set
separators. The $#CHK macro is used to produce a checkpoint
at this time. A checkpoint produces a checkpoint $JOE that
allows for recovery in case of a system or device failure.

15

7 The main print/punch loop is where SPOOL buffers are read,
channel programs are constructed for the output device, and
$EXCPs are issued to print or punch lines of output. This
process continues until the entire data set is read and written to
the output device. The data set is repeated if copy count is
greater than one and a return to step 3 is made if there are
additional data sets in the output group to be processed.

There are
no exits
available
during this
process.

8 Exit 1 is called (R0=8) to allow for installation separator routines
to replace the JES2 routine. The $JOE is placed on the free
queue. When there are no more output data sets to be
processed for the job, the $JQE is placed on the Purge queue.

1

298 z/OS V1R4.0 JES2 Installation Exits

NJE hardcopy phase exits
The following describes the NJE Hardcopy Phase processing:

Table 18. NJE Hardcopy Phase Processing

Step Processing Exit Used

1 The Network SYSOUT Transmitter initializes a SYSOUT
Transmitter device ($DCT) and acquires resources (lines,
buffers, etc.) to prepare for SYSOUT transmissions.

The $#GET service routine is used to search the Job Output
Table ($JOT) to find an eligible $JOE on the network queue.
When a candidate is found the $CBIO macro is used to read
the $JCT, $IOTs and $SWBITs from spool. Exit 7 is taken for
each control block read. If the network job header does not
exist, the NJE SYSOUT transmitter builds it.

7

2 The $NHD (Network Job Header) is then read from spool.
$NHD Validation Routine (NJEHDVAL) is called to validate the
NJE header structure prior to transmission. After validation, Exit
46 is taken. This exit allows the viewing, removing, or alteration
of sections in the Network Job Header.

46

3 A $SEAS (JES2 Security Authorization Service) authorization
check is made for each data set to be transmitted. This call to
the SAF usually passes, because of the writer check previously
done during the execution phase. The reason that this call
should not fail is that a SAF call was made to the WRITER
class during SYSOUT allocation at job execution time. If the job
owner does not have authority to create SYSOUT destined for
a particular node the job will fail in execution.

Another Exit 46 is taken for each data set header followed by
the data itself.

46

4 Exit 46 is taken again for the job trailer. If the NJE job trailer
does not exist, the NJE SYSOUT transmitter builds it. In
general, the $#REM macro is used to remove the $JOE from
the $JOT output queue.

46

5 The data set is purged ($#PURGE) and if the device is a Spool
Offload SYSOUT Transmitter, an SMF24 record is created.
When using SPOOL Offload, the $JOE could remain on the
$JOT and the data set may not be purged if the installation
specified an output disposition where the output would not be
purged after processing.

Purge phase
The purge phase is the final phase of JES2 processing. Jobs are placed on the
purge queue after all spool data set have been processed or if the job gets
canceled. Spool tracks are returned, the SMF 26 record is written and the $JQE is
placed on the free queue. The following scenario describes the processing that
occurs during the Purge Phase.

Table 19. Purge Phase Exits

Step Processing Exit Used

1 A job is selected from the purge queue, the $JCT is read and
Exit 7 is invoked.

7

Appendix C. Job-related exit scenarios 299

Table 19. Purge Phase Exits (continued)

Step Processing Exit Used

2 $PURGE macro calls the purge service routine for each spool
data set. If data set purge verification is active, the $SEAS
macro will be issued for authorization. This invokes Exits 36
and 37 for each purged data set. Spool tracks assigned to the
job are returned.

36
37

3 Buffers are gotten to build the SMF type 26 record and the
JMR. The SMF 26 record is formatted. $QUESMFB macro calls
the SMB buffer queue routine Exit 21 is called and a $POSTQ
is issued to POST the HASPACCT (SMF Writer) subtask.
Because $QPOST was issued, we do not WAIT on the
completion of the SMF write. $QUESMFB returns to HASVPRG
immediately.

21

4 After the HASPACCT subtask is POSTed, SMF exit IEFUJP is
called. None of the jobs resources are available. Only the SMF
record buffer and the JMR (CEPA) are available. The SMFWTM
macro is issued to write the SMF 26 record and HASPACCT
WAITs to be POSTed for the next record if there are no others
to process.

IEFUJP

Exit 7 could possibly be used as a general purpose exit. Exit 21 and SMF exit
IEFUJP are taken after the return of spool tracks. When IEFUJP is invoked, the
in-storage buffer containing the $JCT could be reused and contain another job’s
$JCT.

300 z/OS V1R4.0 JES2 Installation Exits

Appendix D. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1988, 2002 301

302 z/OS V1R4.0 JES2 Installation Exits

Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the document. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this document at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1988, 2002 303

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and condition
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This publication primarily documents information that is NOT intended to be used as
Programming Interfaces of z/OS.

This publication also documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of z/OS. This information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

v Programming Interface Information

v End of Programming Interface Information

304 z/OS V1R4.0 JES2 Installation Exits

Trademarks
The following terms are trademarks of the IBM Corporation in the United states
and/or other countries:
v ACF/VTAM
v Advanced Function Printing
v AnyNet
v AFP
v AS/400
v BookManager
v DFSMS/MVS
v DFSMSdfp
v DFSMSdss
v DFSMShsm
v DFSMSrmm
v DFSORT
v eNetwork
v ESCON
v FFST
v GDDM
v IBM
v IBMLink
v IMS
v MVS/DFP
v MVS/ESA
v MVS/SP
v OS/2
v OS/390
v PR/SM
v Print Services Facility
v Processor Resource/System Manager
v RACF
v Resource Link
v RMF
v S/370
v SOMobjects
v SP
v SP2
v System/36
v System/370
v System/390
v SystemView
v VisualLift
v VTAM
v z/OS
v z/OS.e

Other company, products, and service names may be trademarks or service marks
of others.

Notices 305

306 z/OS V1R4.0 JES2 Installation Exits

Glossary

This glossary defines technical terms and
abbreviations used in JES2 documentation. If you
do not find the term you are looking for, refer to
the index of the appropriate JES2 manual or view
IBM Glossary of Computing Terms, available from:

www.ibm.com/ibm/terminology

This glossary includes terms and definitions from:

American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West
42nd Street, New York, New York 10036.
Definitions are identified by an asterisk (*) that
appears between the term and the beginning of
the definition; a single definition taken from ANSI
is identified by an asterisk after the item number
for that definition.

A
ACB. Access control block

ACF. Advanced communication function

address space. The complete range of addresses
available to a program. See also virtual address space.

Advanced Function Presentation (AFP). A set of
licensed programs, together with user applications, that
use the all-points-addressable concept to print on
presentation devices. AFP includes creating, formatting,
archiving, retrieving, viewing, distributing, and printing
information. See presentation device.

affinity. The condition under which one or more
members of a JES2 multi-access spool configuration
may be designated as qualified to execute certain jobs.

AFP. See Advanced Function Presentation

all-member warm start. A JES2 member restart of the
first member in a multi-access spool (MAS)
configuration. Either the JES2 member previously ended
without error or there must be an IPL of the MVS
system.

all points addressability. The ability to address,
reference, and position text, overlays, and images at
any defined position or pel on the printable area of the
paper. This capability depends on the ability of the
hardware to address and to display each picture
element.

allocate. To assign a resource for use in performing a
specific task.

APA. See all points addressability

APAR. Authorized program analysis report

APPC. Advanced Program-to-Program
Communication.

APT. Application table

artificial JQE. An artificial JQE consists of the base
JQE, the JQX, and additional fields defined in the JQA.

automatic restart. A restart that takes place during
the current run, that is, without resubmitting the job. An
automatic restart can occur within a job step or at the
beginning of a job step. Contrast with deferred restart.
See also checkpoint restart.

automatic volume recognition (AVR). A feature that
allows the operator to mount labeled volumes on
available I/O devices before the volumes are needed by
a job step.

AVR. Automatic volume recognition

B
background. (1) In multiprogramming, the
environment in which low-priority programs are
executed. (2) Under TSO/E the environment in which
jobs submitted through the SUBMIT command or SYSIN
are executed. One job step at a time is assigned to a
region of central storage, and it remains in central
storage to completion. Contrast with foreground.

background job. (1) A low-priority job, usually a
batched or non-interactive job. (2) Under TSO, a job
entered through the SUBMIT command or through
SYSIN. Contrast with foreground job.

BAL. Basic assembler language

batch processing. (1) *Pertaining to the technique of
executing a set of computer programs such that each is
completed before the next program of the set is started.
(2) *Pertaining to the sequential input of computer
programs or data. (3) *Loosely, the serial execution of
computer programs. (4) Under TSO, the processing of
one job step in a region, so called because jobs are
submitted in a group or batch.

baud. (1) A unit of signaling speed equal to the
number of discrete conditions or signal events per
second. For example, one baud equals one-half dot
cycle per second in Morse code, one bit per second in a
train of binary signals, and one 3-bit value per second in

© Copyright IBM Corp. 1988, 2002 307

a train of signals each of which can assume one of
eight different states. (2) In asynchronous transmission,
the unit of modulation rate corresponding to one unit
interval per second; that is, if the duration of the unit
interval is 20 milliseconds, the modulation rate is 50
baud.

binary synchronous communication (BSC).
Communication using binary synchronous transmission.

binary synchronous transmission. Data
transmission in which synchronization of characters is
controlled by timing signals generated at the sending
and receiving stations.

bind. In SNA products, a request to activate a session
between two logical units.

broadcast data set. Under TSO, a system data set
containing messages and notices from the system
operator, administrators, and other users. Its contents
are displayed to each terminal user when he logs on the
system, unless suppressed by the user.

BSAM. Basic sequential access method

BSC. Binary synchronous communication

BSCA. Binary synchronous communication adapter

burst. *To separate continuous-form paper into
discrete sheets.

C
cataloged data set. A data set that is represented in
an index or hierarchy of indexes that provide the means
for locating it.

cataloged procedure. A set of job control statements
that has been placed in a library and that can be
retrieved by name.

CCW. Channel command word

central storage. (1) In z/OS or System/390 virtual
storage systems, the storage of a z/OS or System/390
computing system from which the central processing
unit can directly obtain instructions and data, and to
which it can directly return results. (Formerly referred to
as “real storage”.) (2) Synonymous with processor
storage.

centralized control. Control in which all the primary
station functions of the data link are centralized in one
data station. Contrast with independent control.

CES. Connection event sequence

chain printer. An impact printer that has a revolving
chain with links that carry the type slugs.

change log. Area of the checkpoint data set that
contains the specific control blocks changed by the last
member of the multi-access spool configuration to own
the checkpoint data set.

channel-to-channel (CTC). A method of connecting
two computing devices.

channel-to-channel (CTC) adapter. A device for
connecting two channels on the same processor or on
different processors.

checkpoint. (1) *A place in a routine where a check,
or a recording of data for restart purposes, is performed.
(2) A point at which information about the status of a job
and the system can be recorded so that the job step
can be later started. (3) To record information about the
status of a job and the system for restart purposes.

checkpoint data set. A data set in which information
about the status of a job and the system can be
recorded so that the job step can be restarted later.

checkpoint reconfiguration. A process used by JES2
to dynamically redefine checkpoint data set
specifications for a JES2 MAS.

checkpoint reconfiguration dialog. An interactive
form of a JES2 checkpoint reconfiguration where the
operator directs the reconfiguration process with replies
to a series of WTOR messages.

checkpoint restart. The process of resuming a job at
a checkpoint within the job step that caused abnormal
termination. The restart may be automatic or deferred,
where deferred restart involves resubmitting the job.
See also automatic restart; deferred restart. Contrast
with step restart.

checkpoint write. Any write to the checkpoint data
set. A general term for the primary, intermediate, and
final writes that update any checkpoint data set.

checkpoint/restart facility. (1) A facility for restarting
execution of a program at some point other than at the
beginning, after the program was terminated due to a
program or system failure. A restart can begin at a
checkpoint or from the beginning of a job step, and
uses checkpoint records to reinitialize the system. (2)
Under TCAM, a facility that records the status of the
teleprocessing network at designated intervals or
following certain events. Following system failure, the
system can be restarted and continue without loss of
messages.

checkpointing. Preserving processing information
during a program’s operation that allows such
processing to be restarted and duplicated.

CKPT1. The checkpoint data set designed as the one
on which the reserve is acquired. In a DUAL mode
configuration, CKPT1 is one of the alternately used
primary data sets from which JES2 reads and writes the

308 z/OS V1R4.0 JES2 Installation Exits

checkpoint. In a DUPLEX mode configuration, CKPT1 is
the primary checkpoint data set.

CKPT2. In a DUAL mode configuration, CKPT2 is one
of the alternately-used checkpoint data sets from which
JES2 reads and writes the checkpoint. In a DUPLEX
mode configuration, CKPT2 is the back-up copy
(generally down-level) of the primary checkpoint data
set (CKPT1) which can be used to replace CKPT1 if
necessary. CKPT2 is formatted the same as CKPT1.
(Previously CKPT2 was the DUPLEX checkpoint data
set).

CLPA. Common link pack area

CMB. Console message buffer

CMS. Cross memory services

cold start. A JES2 member start that initializes data
areas and accounting information in central storage and
the job and output queues.

communication line. Any physical link, such as a wire
or telephone circuit, for connecting geographically
dispersed computer systems.

complex. The maximum set of hardware and software
resources that support one or more images of a single
operating system.

configuration. The arrangement of a computer system
or network as defined by the nature, number, and chief
characteristics of its functional units.

connection event sequence. A clock value that
indicates the time a connection took place or was
broken. This is copied to NCC records and used by the
path manager to determine the “most current” record
when keeping track of NJE connections.

console. Any device from which operators can enter
commands or receive messages. For JES2, the same
device from which an operator also enters MVS base
control program commands.

control statements. Statements placed into an input
stream to identify special JES2 processing options for
jobs.

CSA. Common service area

CSECT. Control section

CTC. Channel-to-channel adapter

D
DASD. Direct access storage device

data integrity point. The generic name given to the
point in the 3800 model 3 printing process at which the
data is known to be secure. (Also called the stacker.)

data set forwarding. The dynamic replacement of the
checkpoint data set specifications (data set name and
volume) with new specifications.

data set separator pages. Those pages of printed
output that delimit data sets.

DCT. Device control table

deallocate. To release a resource that is assigned to a
specific task.

dedicated. Pertaining to the assignment of a system
resource - a device, a program, or a whole system - to
an application or purpose.

deferred-printing mode. A printing mode that spools
output through JES to a data set instead of printing it
immediately. Output is controlled by JCL statements.

deferred restart. A restart performed by the system
when a user resubmits a job. The operator submits the
restart deck to the system through a system input
reader. See also checkpoint restart. Contrast with
automatic restart.

dependent job control (DJC). A method of handling
multiple jobs that must be run in a specific order
because of job dependencies.

despooling. The process of reading records off the
spool into central storage. During the despooling
process, the physical track addresses of the spool
records are determined.

destination. A combination of a node name and one
of the following: a userid, a remote printer or punch, a
special local printer, or LOCAL (the default if only a
node name is specified).

destination identifier (destid). The 8-character
subscript on the DESTID(jxxxxxxx) initialization
statement or command that corresponds to a
combination of a first-level destination and a
second-level destination that determines where data
should be sent in a JES2 installation. A destid can be
either a symbolic destination or an explicit destination.

destination node. Node to which data is sent.

device partitioning. A pool of devices (called a fence)
to be used exclusively by a set of jobs in a specific job
class allowing an installation to tailor its device usage to
its anticipated workload.

direct access storage device (DASD). A device in
which the access time is effectively independent of the
location of the data.

DJC. Dependent job control.

DUAL mode. A checkpointing mode that provides the
alternate use of two primary checkpoint data sets

Glossary 309

(CKPT1 and CKPT2). The data sets are referred to as
the to-be-read-from and to-be-written-to data sets.

dump. A report showing the contents of storage.
Dumps are typically produced following program
failures, for use as diagnostic aids.

DUPLEX mode. A checkpointing mode that provides
the continuous use of only one checkpoint data set. A
second (backup) data set is defined, but it is written to
less frequently than the primary.

dynamic allocation. Assignment of system resources
to a program at the time the program is executed rather
than at the time it is loaded into central storage.

dynamic connection. A connection created via
sign-on or NCC record sent from another node
Synonymous with non-static connection.

dynamic table. An installation-defined table that is
used to extend, modify, or delete the JES2 default
processing specifications. See also table pair.

E
EBCDIC. Extended binary coded decimal interchange
code

ECSA. Extended common service area

EM. End of media

end of block (EOB). A code that marks the end of a
block of data.

end-of-file mark (EOF). A code that signals that the
last record of a file has been read.

EOB. End of block

EOF. End of file

EPVT. Extended private storage area

execution node. The JES2 network job entry node
upon which a job is to be executed.

exit points. The place in the code where a routine
(exit) receives control from the system.

explicit destination. A destination identifier of the
form Nnnnn, Rmmmm, RMmmmm, RMTmmmm,
NnnnnRmmmm or Unnnn. See also destination identifier
and symbolic destination.

extended binary coded decimal interchange code
(EBCDIC). A set of 256 characters, each represented
by 8 bits.

external writer. A program that supports the ability to
write SYSOUT data in ways and to devices not
supported by the job entry subsystem.

F
facility. (1) A feature of an operating system, designed
to service a particular purpose, for example, the
checkpoint/restart facility. (2) A measure of how easy it
is to use a data processing system. Together with
system performance, a major factor on which the total
productivity of an installation depends. (3) Anything
used or available for use in furnishing communication
service. Commonly, a general term for communications
paths.

FCB. Forms control buffer

final write. A write of the same information as the
intermediate write done at the end of the checkpoint
cycle. See also intermediate write.

first-level destination. The nodal portion of a
destination (the node to which the data goes).

foreground. (1) in multiprogramming, the environment
in which high-priority programs are executed. (2) Under
TSO, the environment in which programs are swapped
in and out of central storage to allow CPU time to be
shared among terminal users. All command processor
programs execute in the foreground. Contrast with
background.

foreground job. (1) A high-priority job, usually a
real-time job. (2) A teleprocessing or graphic display job
that has an indefinite running time during which
communication is established with one or more users at
local or remote terminals. (3) Under TSO, any job
executing in a swapped region of central storage, such
as a command processor or a terminal user’s program.
Contrast with background job.

forms control buffer (FCB). A buffer that is used to
store vertical formatting information for printing; each
position corresponding to a line on the form.

forwarding. The dynamic replacement of the
checkpoint data set specifications (data set name and
volume) with new specifications.

FSA. Functional subsystem application

FSA startup. That part of system initialization when
the FSA is loaded into the functional subsystem address
space and begins initializing itself.

FSI. Functional subsystem interface

FSI connect. The FSI communication service which
establishes communication between JES2 and the FSA
or functional subsystem.

FSI disconnect. The FSI communication service
which severs the communication between JES2 and the
FSA or functional subsystem.

310 z/OS V1R4.0 JES2 Installation Exits

FSI services. A collection of services available to
users (JES2) of the FSI. These services comprise
communication services, data set services, and control
services.

FSS. Functional subsystem

full function mode. The state that permits a printer to
produce page-mode output.

functional subsystem (FSS). An address space
uniquely identified as performing a specific function
related to the JES. For JES2, an example of an FSS is
the Print Services Facility program that operates the
3800 Model 3 and 3820 printers.

functional subsystem application (FSA). The
functional application program managed by the
functional subsystem.

functional subsystem interface (FSI). The interface
through which JES2 or JES3 communicate with the
functional subsystem.

functional subsystem startup. That process part of
system initialization when the functional subsystem
address space is created.

G
global command. A command that is recognized and
honored by any node in a JES2 network.

global processor. In JES3, the processor that controls
job scheduling and device allocation for a complex of
processors.

GMT. Greenwich mean time.

Greenwich mean time (GMT). The mean solar time of
the meridian of Greenwich used as the prime basis of
standard time throughout the world. See also TOD
clock.

H
handshaking. Exchange of predetermined signals
when a connection is established between two data set
devices.

HASP. Houston automatic spooling priority. A computer
program that provides supplementary job management,
data management, and task management functions,
such as: control of job flow, ordering of tasks, and
spooling. See also JES2.

HASP table. See JES2 table.

HCT. HASP communication table

host processor. (1) *In a network, the processing unit
in which resides the access method for that network. (2)

In an SNA network, the processing unit that contains a
system services control point (SSCP).

host system. *The data processing system to which a
network is connected and with which the system can
communicate.

host-id. The unique 10-digit CPU identification made
up of the 6-digit CPU serial number followed by a 4-digit
model number.

hot start. A JES2 member restart performed when a
member ends abnormally and the MVS system is not
re-IPLed.

I
I/O. input/output

IBM-defined exit. The point in source code where IBM
has added an exit point where an installation routine
can receive control from the operating system. Contrast
with installation-defined exit.

impact printer. *A printer in which printing results from
mechanical impacts.

independent control. In JES2, the process by which
each processor in a complex controls its own job input,
scheduling, and job output. Contrast with centralized
control.

independent mode. A means of isolating a processor
for testing purposes. A processor so designated will only
process jobs that are both routed to it and are
themselves designated to execute on a processor in
independent mode.

initial program load (IPL). The initialization procedure
that causes an operating system to commence
operation.

initialization data set. The data set that contains the
initialization statements and their parameters that
controls the initialization and ultimate processing of
JES2.

initialization parameter. An installation-specified
parameter that controls the initialization and ultimate
operation of JES2.

initialization statement. An installation-specified
statement that controls the initialization and ultimate
operation of JES2.

initiating task. The job management task that controls
the selection of a job and the preparation of the steps of
that job for execution.

initiator. That part of an operating system that reads
and processes operation control language statements
from the system input device.

Glossary 311

initiator/terminator. The job scheduler function that
selects jobs and job steps to be executed, allocates
input/output devices for them, places them under task
control, and at completion of the job, supplies control
information for writing job output on a system output
unit.

input service processing. In JES2, the process of
performing the following for each job: reading the input
data, building the system input data set, and building
control table entries.

input stream control. Synonymous with JES2 reader.

installation-defined exit. The point in source code
where an installation adds an exit point where an
installation routine can receive control from the
operating system. Contrast with IBM-defined exit.

interface. Hardware, software, or both, that links
systems, programs, or devices.

intermediate write. In DUAL mode, the write of the
change log records containing the control blocks that
have been updated since the last checkpoint write. In
DUPLEX mode (or DUAL mode where the change log
overflows the first track) the checkpoint write of the 4K
records.

internal reader. A facility that transfers jobs to JES.

interrupt. (1) *To stop a process in such a way that it
can be resumed. (2) In data transmission, to take an
action at a receiving station that causes the transmitting
station to terminate a transmission.

IOT. input/output table

IPL. initial program load

IPS. Installation performance specification

J
JCL. Job control language

JCT. Job control table

JES2. Job entry subsystem 2. An MVS subsystem that
receives jobs into the system, converts them to internal
format, selects them for execution, processes their
output, and purges them from the system. In an
installation with more than one processor, each
processor’s JES2 subsystem independently controls job
input, scheduling, and output processing.

JES2 reader. In MVS, the part of the job entry
subsystem that controls the input stream and its
associated job control statements. Synonymous with
input stream control.

JES2 table. A JES2-defined table that is used to
specify the default characteristics of many of its

initialization parameters, commands, and other
externals. See also table pair.

JES2 writer. In MVS, the part of the job entry
subsystem that controls the output of specified data
sets. Synonymous with output stream control.

JES3. Job entry subsystem 3. An MVS subsystem that
receives jobs into the system, converts them to internal
format, selects them for execution, processes their
output, and purges them from the system. In an
installation with multiple processors (a JES3 complex),
one processor’s JES3 subsystem exercises centralized
control over the other processors and distributes jobs to
them through use of a common job queue.

JIX. Job queue index

JMR. Job management record

job. A unit of work for an operating system. Jobs are
defined by JCL statements.

job class. Any one of a number of job categories that
can be defined. With the classification of jobs and
direction of initiator/terminators to initiate specific
classes of jobs, it is possible to control the mixture of
jobs that are performed concurrently.

job control language (JCL). A programming language
used to code job control statements.

job control language (JCL) statements. Statements
placed into an input stream to define work to be done,
methods to be used, and the resources needed.

job control statement. *A statement in a job that is
used in identifying the job or describing its requirements
to the operating system.

job entry subsystem (JES). An MVS facility that
receives jobs into the system and processes output data
produced by the jobs. See also JES2 and JES3.

job entry subsystem 2. See JES2.

job entry subsystem 3. See JES3.

job output element (JOE). Information that describes
a unit of work for the output processor and represents
that unit of work for queuing purposes.

job priority. A value assigned to a job that is used as
a measure of the job’s relative importance while the job
contends with other jobs for system resources.

job queue element (JQE). A control block that
represents an element of work for the system (job) and
is moved from queue to queue as that work moves
through each successive stage of JES2 processing.

job separator page data area (JSPA). A data area
that contains job-level information for a data set. This
information is used to generate job header, job trailer or

312 z/OS V1R4.0 JES2 Installation Exits

data set header pages. The JSPA can be used by an
installation-defined JES2 exit routine to duplicate the
information currently in the JES2 separator page exit
routine.

job separator pages. Those pages of printed output
that delimit jobs.

JOE. Job output element

JOT. Job output table

K
keyword. A part of a command operand that consists
of a specific character string (such as DSNAME=).

keyword parameter. A parameter that consists of a
keyword, followed by one or more values. Contrast with
positional parameter. See also parameter.

L
label. (1) *One or more characters used to identify a
statement or an item of data in a computer program. (2)
An identification record for a tape or disk file.

line mode. A type of data with format controls that
only allow a printer to format data as a line.

line mode data. A type of data that is formatted on a
physical page by a printer only as a single line.

LMT. Load module table

local devices. Those devices that are directly
attached to the operating system without the need for
transmission facilities.

local processing environment. The collection of
devices all of which are locally attached. That is, they
are connected without the need for transmission
facilities.

local system queue area (LSQA). In MVS, one or
more segments associated with each virtual storage
region that contain job-related system control blocks.

locally attached. A manner of device connection
without the need for transmission facilities.

logical unit (LU). The combination of programming
and hardware of a teleprocessing subsystem that
functions like a terminal to VTAM.

logoff. (1) The procedure by which a user ends a
terminal session. (2) In VTAM, a request that a terminal
be disconnected from a VTAM application program.

logon. (1) The procedure by which a user begins a
terminal session. (2) In VTAM, a request that a terminal
be connected to a VTAM application program.

loop. A situation in which an instruction or a group of
instructions execute repeatedly.

LPA. Link pack area

LRECL. Logical record length

LSQA. Local system queue area

LU. Logical unit

M
machine check interruption. An interruption that
occurs as a result of an equipment malfunction or error.

MAS. See multi-access spool configuration.

MCS. Multiple console support

member. A JES2 instance of a MVS system

message. For communication lines, a combination of
characters and symbols transmitted from one point to
another. See also operator message.

MIT. Module information table

MLU. Multiple logical unit

multi-access spool complex. See multi-access spool
configuration.

multi-access spool configuration. Multiple systems
sharing the JES2 input, job and output queues (via a
checkpoint data set or coupling facility).

multi-access spool multiprocessing. Two or more
computing systems interconnected by an I/O
channel-to-channel adapter. The CPs can be different
types and have their own unique configurations.

multiple console support (MCS). A feature of MVS
that permits selective message routing to up to 32
operator’s consoles.

Multiple Virtual Storage (MVS). An operating system
that manages resources and work flow while jobs are
running.

multiprocessing. (1) *Pertaining to the simultaneous
execution of two or more computer programs or
sequences of instructions by a computer network. (2)
*Loosely, parallel processing. (3) Simultaneous
execution of two or more sequences of instructions by a
multiprocessor.

multiprocessing system. A computing system
employing two or more interconnected processing units
to execute programs simultaneously.

multiprocessor. (1) A computer employing two or
more processing units under integrated control. (2) A

Glossary 313

system consisting of two or more CPs (or ALUs, or
processors) that can communicate without manual
intervention.

MVS. Multiple virtual storage.

N
NACT. Network account table

NAT. The nodes attached table, which is an internal
JES2 control block containing information about each
pair of nodes connected, or recently disconnected.

NCC record. The network connection and control
records.

NCP. Network control program

NCP/VS. Network control program/VS

NDH. Network data set header

network. For JES2, two or more systems and the
connections over which jobs and data are distributed to
the systems. The other systems can be non-JES2
systems with compatible networking facilities.
Connections can be established through
communications paths using SNA or BSC protocols.

network job entry (NJE). A JES2 facility that provides
for the passing of selected jobs, system output data,
operator commands, and messages between
communicating job entry subsystems connected by
binary-synchronous communication lines,
channel-to-channel adapters, and shared queues.

Network Job Entry (NJE) facility. In JES2, a facility
which provides for the transmission of selected jobs,
operator commands, messages, SYSOUT data, and
accounting information between communicating job
entry nodes that are connected in a network either by
binary synchronous communication (BSC) lines
channel-to-channel (CTC) adapters, or by System
Network Architecture (SNA).

Network Job Entry facility. In JES2, a facility which
provides for the transmission of selected jobs, operator
commands, messages, SYSOUT data, and accounting
information between communicating job entry nodes
that are connected in a network either by binary
synchronous communication (BSC) lines or by
channel-to-channel (CTC) adapters.

network operator. (1) The person responsible for
controlling the operation of a telecommunication
network. (2) A VTAM application program authorized to
issue network operator commands.

NIP. Nucleus initialization program.

NIT. The node information table, which is an internal
JES2 control block containing information about each
NJE node.

NJE. Network job entry

NJH. Network job header

node. (1) One of the systems in a network of systems
connected by communication lines or CTC adapters. (2)
In VTAM, an addressable point in a telecommunication
system defined by a symbolic name. (3) In JES2 NJE,
one or more job entry subsystems sharing a common
job queue.

node name. An 8-character alphameric name which
represents a node to other parts of the NJE network.

non-impact printer. *A printer in which printing is not
the result of mechanical impacts; for example, thermal
printers, electrostatic printers, photographic printers.

non-static connection. A connection created via
sign-on or NCC record sent from another node
Synonymous with dynamic connection.

nonpageable dynamic area. *In MVS, an area of
virtual storage whose virtual addresses are identical to
real addresses; it is used for programs or parts of
programs that are not to be paged during execution.
Synonymous with V=R dynamic area.

nonpageable region. In MVS, a subdivision of the
nonpageable dynamic area that is allocated to a job
step or system task that is not to be paged during
execution. In a nonpageable region, each virtual
address is identical to its real address. Synonymous
with V=R region.

nucleus. That portion of a control program that always
remains in central storage.

nucleus initialization program (NIP). The MVS
component that initializes the resident control program.

O
offload. Moving jobs and work off the work queues to
remove them from contention for system resources, or
off spool to free up system work space.

operand. (1) *That which is operated upon. An
operand is usually identified by an address part of an
instruction. (2) Information entered with a command
name to define the data on which a command
processor operates and to control the execution of the
command processor.

operator commands. Statements that system
operators may use to get information, alter operations,
initiate new operations, or end operations.

314 z/OS V1R4.0 JES2 Installation Exits

operator message. A message from an operating
system directing the operator to perform a specific
function, such as mounting a tape reel; or informing the
operator of specific conditions within the system, such
as an error condition.

operator orientation point. The generic name given
to the point in the 3800 model 3 printing process at
which the data becomes visible to the operator, and is
therefore the point at which all operator commands are
directed. Synonymous with transfer station.

output group. A set of a job’s output data sets that
share output characteristics, such as class, destination,
and external writer.

output stream control. Synonymous with JES2 writer.

output writer. A part of the job scheduler that
transcribes specified output data sets onto a system
output device independently of the program that
produced the data sets.

overlays. A collection of predefined data such as
lines, shading, text, boxes, or logos, that can be merged
with the variable data on a page while printing.

P
page. (1) In virtual storage systems, a fixed-length
block of instructions, data, or both, that can be
transferred between central storage and external page
storage. (2) To transfer instructions, data, or both,
between central storage and external page storage. (3)
The unit of output from an AFP printer, such as the
3800-3, running with full function capability or 3820
printer.

page data set. In z/OS or System/390 virtual storage
systems, a data set in external page storage in which
pages are stored.

page fault. In z/OS or System/390 virtual storage
systems, a program interruption that occurs when a
page that is marked “not in central storage” is referred
to by an active page.

page mode. The mode of operation in which the AFP
print (such as the 3800 Printing Subsystem) can accept
a page of data from a host processor to be printed on
an all points addressable output medium.

page mode data. A type of data that can be formatted
anywhere on a physical page. This data requires
specialized processing such as provided by the Print
Services Facility for AFP printers, such as the 3800-3
and 3820.

page mode environment checkpointing. That
process which preserves the information necessary to
resume page-mode printing.

page mode printer. An AFP printer, such as the 3800
model 3 and 3820, that can print page mode data.

pageable region. In MVS, a subdivision of the
pageable dynamic area that is allocated to a job step or
a system task that can be paged during execution.
Synonymous with V=V region.

paging. In z/OS or System/390 virtual storage
systems, the process of transferring pages between
central storage and external page storage.

paging device. In z/OS or System/390 virtual storage
systems, a direct access storage device on which pages
(and possibly other data) are stored.

parameter. (1) *A variable that is given a constant
value for a specific purpose or process. (2) See
keyword parameter, positional parameter.

password. A unique string of characters that a
program, computer operator, or user must supply to
meet security requirements for gaining access to data.

patch. *To modify a routine in a rough or expedient
way.

path. In VTAM, the intervening nodes and lines
connected a terminal and an application program in the
host CPU.

path manager. The part of JES2 that controls NJE
sign-on, sign-off, keeps track of all other nodes and
connections in the network, and determines the best
path to reach those nodes. (JES2 is unique among
other NJE subsystems in keeping track of the network
topology through NCC records.)

PCE. Processor control element

pel. Picture element

PDDB. Peripheral data definition block

PEP. Partitioned emulator program

physical unit (PU). (1) The control unit or cluster
controller of an SNA terminal. (2) The part of the control
unit or cluster controller that fulfills the role of a physical
unit as defined by systems network architecture (SNA).

PLPA. Pageable link pack area

poly-JES. Concurrent operation of multiple copies of
JES2 on a single MVS system to allow an installation to
separate its primary production system(s) and test
system(s).

positional parameter. A parameter that must appear
in a specified location, relative to other parameters.
Contrast with keyword parameter. See also parameter.

PPL. Purge parameter list

Glossary 315

PRE. Processor recovery element

presentation device. A device that produces
character shapes, graphics pictures, images, or bar
code symbols on a physical medium. Examples of
physical media are display screens, paper, foils,
microfilm, and labels.

primary write. The write of the 4K records to the
down-level checkpoint data set to make it current.

Print Services Facility (PSF). An IBM licensed
program that produces printer commands from the data
set to it. PSF programs run on the z/OS, OS/390, MVS,
VM, VSE, OS/2, AIX, and OS/400 operating platforms.
For JES, PSF programs operates the 3800 model 3 and
3820 printers. PSF operates as a functional subsystem.

priority aging. A function of JES2 by which the longer
a job waits to be selected for processing, the greater
become its chances of being selected to run.

private connection. A connection known only to the
two nodes making the connection.

process mode. The mode in which SYSOUT data
exists and is to be processed by a JES output device.
There are two IBM-defined process modes: line mode
and page mode.

processor storage. See central storage.

program temporary fix (PTF). A temporary solution or
bypass for a problem diagnosed by IBM as the result of
a defect in a current unaltered release of the program.

protocols. Rules for using communication lines.
Protocols can identify the direction of data flow, where
data begins and ends, how much data is being
transmitted, and whether data or control information is
being sent.

PSF. Print Services Facility

PTF. Program temporary fix

PU. Physical unit.

Q
QSE. Shared queue element

queue. A line or list formed by items in a system
waiting for processing.

quick start. A JES2 member restart in an existing
multi-access spool (MAS) configuration. The JES2
member previously ended without error.

quiescing. *The process of bringing a device or a
system to a halt by rejection of new requests for work.

R
RACF. Resource Access Control Facility

read 1. A read of the first track of a checkpoint data
set. Usually performed as the initial I/O operation to a
checkpoint data set.

read 2. A read of the 4K page data records and any
change log records not contained on the first track from
a checkpoint data set. Usually performed after a READ
1 as the second checkpoint I/O operation in a
checkpoint cycle.

reader. A program that reads jobs from an input device
or data base file and places them on the job queue.

real address. In virtual storage systems, the address
of a location in central storage.

real storage. See central storage.

remote. RMT

remote job entry (RJE). Submission of job control
statements and data from a remote terminal, causing
the jobs described to be scheduled and executed as
though encountered in the input stream.

remote station. *Data terminal equipment for
communicating with a data processing system from a
location that is time, space, or electrically distant.

remote terminal. An input/output control unit and one
or more input/output devices attached to a system
through a data link.

remote terminal access method (RTAM). A facility
that controls operations between the job entry
subsystem (JES2) and remote terminals.

remote workstation. (1) *Data terminal equipment for
communicating with a data processing system from a
location that is time, space, or electrically distant.
Synonymous with remote station. (2) A workstation that
is connected to a system by means of data transmission
facilities.

RJE. Remote job entry

RMS. Recovery management support

RMT. Remote

RMT generation. Generation of remote workstations
for remote job entry.

routing. (1) The assignment of the communications
path by which a message or telephone call will reach its
destination. (2) In NJE, the path, as determined by NJE
or explicitly by the operator, that a job or SYSOUT data
set will take to reach its destination.

316 z/OS V1R4.0 JES2 Installation Exits

routing code. A code assigned to an operator
message and used, in systems with multiple console
support (MCS), to route the message to the proper
console.

RPL. Request parameter list

RPS. Rotational position sensing

RTAM. Remote terminal access method

RTP. Remote terminal program

S
SAF. Security authorization facility

SAM. Sequential access method

SDLC. Synchronous data link control

SDSB. Spool data set browse

second-level destination. Specifies a remote
workstation, special local route code, userid, or LOCAL
or ANYLOCAL (for data not associated with a specific
routing).

secondary console. In a system with multiple
consoles, any console except the master console. The
secondary console handles one or more assigned
functions on the multiple console system.

security classification. (1) An installation-defined
level of security printed on the separator pages of
printed output. (2) In RACF, the use of security
categories, a security level, or both, to impose additional
access controls on sensitive resources. An alternative
way to provide security classifications it to use security
labels.

segments. A collection of composed text and images,
prepared before formatting and included in a document
when it is printed.

session. (1) The period of time during which a user of
a terminal can communicate with an interactive system;
usually, the elapsed time from when a terminal is logged
on to the system until it is logged off the system. (2)
The period of time during which programs or devices
can communicate with each other. (3) In VTAM, the
period of time during which a node is connected to an
application program.

setup. The preparation of a computing system to
perform a job or job step. Setup is usually performed by
an operator and often involves performing routine
functions, such as mounting tape reels and loading card
decks.

shared broadcasting. The two TSO data sets
SYS1.UADS (TSO user definition) and

SYS1.BRODCAST (TSO message transmission
definition) are shared by all systems in the multi-access
spool (MAS) complex.

simultaneous peripheral operations online (spool).
The reading and writing of input and output streams on
auxiliary storage devices, concurrently while a job is
running, in a format convenient for later processing or
output operations.

single-member warm start. A JES2 member restart
of a new member in an existing multi-access spool
(MAS) configuration. The JES2 member previously
ended abnormally. Before the restart can occur, there
must be an IPL of the MVS system.

single-processor complex. A processing environment
in which only one processor (computer) accesses the
spool and comprises the entire node.

SMF. System management facilities

SNA. Systems Network Architecture

special local. A routing in the form Unnnn, where
‘nnnn’ signifies a numeric value in the range of
1–32767. Usually, installations use this routing to
specify local printers and punches.

spin data set. A data set that is deallocated (available
for printing) when it is closed. Spin off data set support
is provided for output data sets just prior to the
termination of the job that created the data set.

spool. Simultaneous peripheral operations online.

spooled data set. A data set written on an auxiliary
storage device and managed by JES.

spooled data set browse (SDSB). An application that
allows a program to read spool data sets.

spooling. The reading and writing of input and output
streams on auxiliary storage devices, concurrently with
job execution, in a format convenient for later
processing or output operations.

SQA. System queue area

SRM. System resources manager

static connection. A connection (also called
“predefined connection” in earlier releases) between two
nodes created by either a JES2 initialization or an
operator command.

STC. Started task control

step restart. A restart that begins at the beginning of a
job step. The restart may be automatic or deferred,
where deferral involves resubmitting the job. Contrast
with checkpoint restart.

Glossary 317

subnet. Subset of a NJE network identified by an
eight-character ‘SUBNET’ name on the JES2 NODE
initialization statement. The grouping of nodes into
“SubNets” is based on the assumption that if you have
access to any node in the subnet, you have access to
them all.

subsystem. A secondary or subordinate system,
usually capable of operating independently of, or
asynchronously with, a controlling system.

SVC. Supervisor call instruction

SVC interruption. An interruption caused by the
execution of a supervisor call instruction, causing
control to be passed to the supervisor.

SWA. Scheduler work area

swap data set. A data set dedicated to the swapping
operation.

swapping. An MVS paging operation that writes the
active pages of a job to auxiliary storage and reads
pages of another job from auxiliary storage into central
storage.

symbol. (1) *A representation of something by reason
of relationship, association, or convention. (2) In MVS, a
group of 1 to 8 characters, including alphanumeric
characters and the three characters: #, @, $. The
symbol begins with either an alphabetic character or
one of the three characters (#,@,$).

symbolic address. *An address expressed in symbols
convenient to the computer programmer.

symbolic destination. A destination identifier
specifying a symbolic name that represents a JES2
destination. See also destination identifier and explicit
destination.

synchronous data link control (SDLC). A discipline
for managing synchronous, transparent, serial-by-bit
information transfer over a communication channel.
Transmission exchanges may be duplex or half-duplex
over switched or nonswitched data links. The
communication channel configuration may be
point-to-point, multipoint, or loop.

syntax. (1) *The structure of expressions in a
language. (2) The rules governing the structure of a
language.

SYSIN. A system input stream; also, the name used as
the data definition name of a data set in the input
stream.

SYSLOG. System log

SYSOUT. A system output stream; also, an indicator
used in data definition statements to signify that a data
set is to be written on a system output unit.

sysplex. A set of MVS systems communicating and
cooperating with each other through certain multisystem
hardware components and software services to process
customer workloads.

system affinity. See affinity.

system control programming. IBM-supplied
programming that is fundamental to the operation and
maintenance of the system. It serves as an interface
with program products and user programs and is
available without additional charge.

system management facilities (SMF). An MVS
component that provides the means for gathering and
recording information that can be used to evaluate
system usage.

system output writer. A job scheduler function that
transcribes specified output data sets onto a system
output unit, independently of the program that produced
the data sets.

system queue area (SQA). In MVS, an area of virtual
storage reserved for system-related control blocks.

system services control point. *In SNA, the focal
point within an SNA network for managing the
configuration, coordinating network operator and
problem determination requests, and providing directory
support and other session services for end users of the
network.

systems network architecture (SNA). The total
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through a communication system.

T
table pair. A set of JES2-defined, USER-defined, and
dynamic tables that an installation can use to modify
JES2 processing.

TCAM. Telecommunications access method.

telecommunications access method (TCAM). A
method used to transfer data between central storage
and remote or local terminals. Application programs use
either GET and PUT or READ and WRITE macro
instructions to request the transfer of data, which is
performed by a message control program. The message
control program synchronizes the transfer, thus
eliminating delays for terminal/output operations.

teleprocessing. The processing of data that is
received from or sent to remote locations by way of
telecommunication lines.

terminal. A device, usually equipped with a keyboard
and some kind of display, capable of sending and
receiving information over a communication channel.

318 z/OS V1R4.0 JES2 Installation Exits

text transparency. A provision that allows BSC to
send and receive messages containing any or all of the
256 character combinations in EBCDIC, including
transmission control characters. Transmission control
characters sent in a message are treated as data
unless they are preceded by the data link escape (DLE)
control character.

TGB. Track group block

TGBE. Track group block entry

tightly-coupled multiprocessing. Two computing
systems operating simultaneously under one control
program while sharing resources.

Time Sharing Option Extensions (TSO/E). A
licensed program that is based on the Time Sharing
Option (TSO). It allows MVS users to interactively share
computer time and resources.

time tolerance. The difference between the TOD
clocks on two adjacent nodes, beyond which the path
manager will not allow a session to be established.

time-of-day clock. See TOD clock.

TOD. Time-of-day

TOD clock. A timing device that counts units of time
based on the starting point of 00 hours, 00 minutes, and
00 seconds on January 1, 1900. Time-of-day (TOD)
information is used, for example, to monitor computer
operations and events.

token. Specifically defined for JES2 checkpoint
processing as a checkpoint identifier that is used to
determine checkpoint I/O status.

trace. (1) The record of a series of events. (2) To
record a series of a events as they occur. (3) A report
showing data relevant to a particular point in the
processing of a program. Traces are typically produced
for analysis of program performance, but they can also
be valuable diagnostic aids.

tracing routine. *A routine that provides a historical
record of specified events in the execution of a
program.

traffic. In data communication, the quantity of data
transmitted past a particular point in a path.

train printer. A printer in which the type slugs are
assembled in a train that moves along a track. Contrast
with chain printer.

transfer station. The point in the 3800 model 3
printing process at which the data set becomes visible
to the operator, and is therefore the point at which all
operator commands are directed. Synonymous with
operator orientation point.

TSO. Time-sharing option. See Time Sharing Option
Extensions (TSO/E).

TSO/E. Time Sharing Option Extensions

TSU. Time-sharing user

TTE. Trace table entry

type font. In printing, a set of type that is of a
particular size and style (for example, 10-point century
school book).

U
UCB. Unit control block

UCS. Universal character set.

unallocate. See deallocate.

unit. (1) *A device having a special function. (2) A
basic element.

unit address. The address of a particular device,
specified at the time a system is installed; for example,
191 or 293.

universal character set (UCS). A printer feature that
permits the use of a variety of character arrays.

user identification (USERID). A 1-8 character symbol
identifying a system user.

user table. An installation-defined table that is used to
extend, modify, or delete the JES2 default processing
specifications. See also table pair.

USERID. User identification.

V
V=R dynamic area. Synonymous with nonpageable
dynamic area.

V=R region. Synonymous with nonpageable region.

V=V region. Synonymous with pageable region.

VIO. virtual input/output

virtual address space. In virtual storage systems, the
virtual storage assigned to a job, terminal user, or
system task. See also address space.

Virtual Telecommunications Access Method
(VTAM). A set of programs that control communication
between terminals and application programs running
under MVS.

VTAM. Virtual Telecommunications Access Method.

Glossary 319

W
warm start. A general term for a JES2 member
restart. See also hot start; quick start; single-member
warm start; all-member warm start.

writer. See output writer.

WTO. Write-to-operator

WTOR. Write-to-operator with reply

X
XFER. Transfer

XIT. Exit information table

XRT. Exit routine table

Numerics
3800 compatibility mode. Operating the 3800 model
3 printer as a 3800 Model 1 printer.

3800 model 3 startup. That process part of system
initialization when the 3800 model 3 printer is initializing.

320 z/OS V1R4.0 JES2 Installation Exits

Index

Special characters
(exit 26) 181
$$WTO macro 20
$$WTOR macro 20
$#CHK macro 298
$CHK 286
$CKPT macro 288, 296
$CRET macro 20
$CWTO macro 20
$D EXIT(nnn) command 40
$DCT 289
$ENTRY macro 23, 26
$ERROR macro 16
$ESTAE macro 27
$EXIT macro 26, 46

MAXRC= operand 16
$FREEBUF macro 65

$FREEBUF 65
$GETBUF 65

$GETBUF macro 65
$GETSMFB usage 163
$HASP426 message 59
$HASP427 message 59
$HASP428 message 60
$HASP546 message 130
$HASP864 message 62, 158, 174
$HASPGBL copying 26
$IOT 286
$JCAN macro 166
$JCT 286
$JCT/JMR 288
$JCTX extension

accounting field 76
exit 1 65, 216, 222
exit 11 119
exit 12 123
exit 13 130
exit 15 138
exit 16 144
exit 2 71
exit 20 160
exit 23 170
exit 25 178
exit 28 187
exit 3 76
exit 30 194
exit 32 202
exit 33 206
exit 34 210
exit 35 213
exit 39 198, 232
exit 4 84, 98
exit 40 236
exit 43 249
exit 44 252
exit 46 261
exit 47 266

$JCTX extension (continued)
exit 48 270
exit 6 98
exit 7 102
exit 8 105
exit 9 110

$JIB 11
$JOE 11
$MODEND macro 26
$MODULE macro 26
$OCT 286
$P Q command 130
$PBLOCK service routine 65

$SEPPDIR usage 65
$PCE 289
$QSUSE macro 287
$QUESMFB usage 163
$RETURN macro 14
$SAVE macro 14
$SCAN facility 60, 156
$STMTLOG macro 156
$STORE macro 14
$STRAK (exit 12) 121
$SWBIT 286
$T EXIT command 156
$T EXIT(nnn) command 40
$T EXIT(nnn) operator command 27
$TRACE macro 27
$TRACK (exit 11) 117
$USER1 through $USER5 175
$WTO messages, modifying 143
$WTO parameter list usage 143
$WTO screen exit 113
&RJOBOPT usage 76

A
abend code 131

D37 131
accessibility 301
account field scan 56
accounting field scan exit 72
across environment exits 10
addressability of the exit 23
addressing requirements

$AMODE
AMODE 15

31-bit 15
residency 15
RMODE 15

affinity
system 159

allocation 117
spool partitioning ($STRAK) 121

alter console routing 114
alter SMF control block 163
altering operating states of exits 5
analyzing initialization statements 155

© Copyright IBM Corp. 1988, 2002 321

APPC (Advanced Program-to-Program Communication)
transaction program (TP) 247

areas of modification in JES2 2
assembler language for exits 9
assembly environment

$MODULE macro 9
assign system affinity 159
authorized receivers

limiting 129
automatic tracing 27

B
BSC RJE devices

controlling 147
BSC RJE sign-on/sign-off exit 147
buffer

use in Exit 1 65

C
calling environment 9
cancel

exit 164
cancel status exit 164
CEPA 288, 300
change notify routing 143
changing message text (exit 10) 114
changing output grouping keys 239
changing SYSOUT characteristics

exit 235
checking initialization statements 155
checkpoint 298
checkpoint control blocks 286
CICS

interface to JES2 127
codes 16

exit-dependent return codes 16
return (greater than 4) 16
return codes 16

coding considerations 12
$ENTRY macro 23
addressability of the exit 23
control blocks for exits 16
exit-dependent return codes 16
linkage conventions 13
main task exits 13
multiple exit routines 14
naming the exit 23
nonreentrant 12
packaging the exit 26, 35
received parameters 15
recovery for exits 27
reentrant 12
return codes (greater than 4) 16
return codes for exits 16
service routine usage 19
source module conventions 23
subtask exits 13
tracing the exit 27

coding language for exits 9

COMAUTH structure 90
command 40

$D EXIT(nnn) 40
$P Q 130
$T EXIT 156
operator ($T EXIT(nnn)) 27
preprocessor exit 87
RECEIVE 128
TRANSMIT 130

communication
$CWTO macro (exit 5) 91
exit routine-to-exit point

response byte 20
exit-to-operator 20
JES2-to-operator 2

condition byte
exit point-to-exit routine

communication 20
CONSOLE initialization statement 156
console message buffer (CMB) 113

CMBFLAG usage (exit 10) 114
CMBJOBN usage (exit 10) 114
CMBROUT usage (exit 10) 114
CMBTEXT usage (exit 10) 114
interrogating (exit 10) 113
usage (exit 16) 143

control block read/write (JES2) 101
JCTJQE usage 101
JQETYPE usage 101
PCEID usage 101
specific description 101

control block read/write (JES2) exit 101
control block read/write exit 105
control blocks for exits 16
control statement

/*JOBPARM
job control field table 76

/*ROUTE
job control table field 76

control statement scan 81
HASPRCCS replacement 81
recovery 82
specific description 81

control statements
/*SETUP

job control table fields 74
controlling BSC RJE devices 147
controlling SNA RJE devices 151
converter

exit 44 251
converter/interpreter text scan 95

CNVWORK usage 98
recovery 97
specific description 95

converter/interpreter text scan exit 56
Converter/Interpreter text scan exit 93
COPY $HASPGBL 26
create SMF control block 163
creation of installation control blocks 173
customer information control systems 127

322 z/OS V1R4.0 JES2 Installation Exits

D
data set 156

log data set 156
separator exit 137

deleting initialization statements 155
device 147

BSC RJE remote 147
SNA RJE remote 151

disability 301
disabled exit state 5
disabling the exit 40
DISOSS

interface to JES2 127
distributed office support system 127
documents, licensed xii
DTE 292
dual execution environments 10

E
enabled exit state 5
enabling trace (ID 13) for tracing 27
end of job input exit 158
environments 9
environments for exits 9

caller’s environment 9
execution environment 9
JES2 main task 9
JES2 subtask 9
user address space 9

error 40
D37 abend 131
isolating them 40

ESTAE 191
recovery 185, 187, 191, 193, 197, 201, 205, 209,

213, 215, 221
execution environment

FSS (functional subsystem address space) 9
JES2 (main task) 9
SUBTASK (subtask) 9
USER (user address space) 9

execution node 159
exit 1, 176

$WTO screen 113
across environments 10
addressability 23
BSC RJE sign-on/sign-off 147
cancel/status 164
control block read/write 56
control block usage 16
Converter/Interpreter text scan 56
end of job input 158
IBM-defined 4, 49
implementation table 56
individual purposes 49
initialization JCL 29
initialization statement scan 155
initializing in the system 36
installation-defined 4, 45
integrating exit routines 35

exit (continued)
introduction 1
JCL/JES2 control statement scan 56
JES2 command preprocessor 56
job queue work select 133, 273
Job Queue Workload Selection (initiator jobs) 56
job separator page process 168
job statement account field scan 56, 72
job statement scan 56
job-related 40
job-related (defined) 5
linkage conventions 13
logic 19
mask (JOBMASK) 40
modifying a notify user message 243
modifying SYSOUT characteristics 235
multiple exit routines 6

linkage conventions 14
naming the exit 23
NJE SYSOUT reception data set disposition 231
notify 143
operating environment 9
output data set/copy separators 137
packaging 35
packaging the code 26
passing control to them 40
PCE attach/detach 183
post initialization 171, 173
pre-initialization 56
pre-initialization (exit 0) 59
pre-security authorization call 215
print/punch job separator 62
print/punch separator 56
received parameters 15
recovery considerations 27
reentrant code considerations 12
return code responsibility 14
return codes 16
service routine usage 19
SMF record 162
SNA RJE logon/logoff 151
source module conventions 23
specific individual uses 49
specific titles of each 49
specific uses 49
spool partitioning allocation ($STRAK) 121
spool partitioning allocation ($TRACK) 117
SSI data set allocation 197
SSI data set CLOSE 205
SSI data set OPEN and restart 193
SSI data set unallocation 209
SSI end-of-memory 189
SSI end-of-task 213
SSI job selection 201
SSI job termination 186
SSI SYSOUT data set unallocation 269
status (enabled, disabled) 40
synchronization 12
termination 179
testing exit routines 35
tracing status 43

Index 323

exit (continued)
tracing their execution 27
TSO/E interactive data transmission facility screening

and notification 127
TSO/E receive data set disposition 227
using control blocks 16
writing an exit routine 9

Exit 1
$FREEBUF macro 65
$GETBUF macro 65
buffer usage 65

exit 10 113
CMBFLAG usage 114
CMBJOBN usage 114
CMBROUT usage 114
CMBTEXT usage 114

exit 11 117
$TRACKX exit point 117
JCTSAMSK usage 117

exit 12 121
$STRAKX exit point 122
JCTSAMSK usage 121

exit 13 127
$HASP546 message 130
$HASP548 message 127
$HASP549 message 127
$P Q command 130
D37 abend 131
INXP macro 131
network data set header (NDH) 127
network job header (NJH) 127
NOOUTPUT option 131
NOTIFY= option 130
PDBFLAG1 usage 132
PDBWTRID usage 132
peripheral data definition block ($PDDB) 127
RECEIVE command 128
recovery 128
screen incoming files 127
TRANSMIT command 130
TSUCLASS statement 131

exit 14 133
CCW translate table usage 137
finding job queue work 133
PRTRANS table 137

exit 15 137
exit 16 143

change notify routing 143
CMB usage 143
modify $WTO messages 143

exit 17 147
exit 18 151

MICEXIT exit point 152
MSNALXIT exit point 151
MSNALXT2 exit point 152

exit 19 155
$HASP864 message 158
$SCAN facility usage 156
$STMTLOG macro 156
$T EXIT command 156
CONSOLE initialization statement 156

exit 19 (continued)
EXIT(nnn) usage 156
LOADmod usage 156

exit 20 159
JCTIPTIO usage 160
PCE work area usage 159

exit 21 163
$GETSMFB usage 163
$QUESMFB usage 163

exit 22 165
$JCAN macro 166
IKJ56216I message 166

exit 23 169
exit 24 173

$HASP864 message 174
$T EXIT command usage 174
$USER1 through $USER5 175
EXITnnn statement 174
recovery 173

exit 26 181
exit 27 185
exit 28 187
exit 29 191
exit 3 73

&RJOBOPT use 76
exit 3 74
HASPRSCN replacement 73
JCTJOBID usage 76
JCTWORK usage 76
JCTXWRK usage 77
recovery 74

exit 30 193
exit 31 197
exit 32 201
exit 33 205
exit 34 209
exit 35 213
exit 36 215
exit 37 221

post-security authorization call 221
exit 38 227
exit 39 231
exit 4 81

HASPRCCS replacement 81
recovery 82

exit 40 235
exit 41 239
exit 42 243

recovery 243
exit 43 247
exit 44 251
exit 45 255
exit 46 259
exit 47 265
exit 48 269
exit 49 273
exit 5 87

$CWTO macro 91
COMAUTH structure 90
recovery 89

exit 6 95

324 z/OS V1R4.0 JES2 Installation Exits

exit 6 (continued)
CNVWORK usage 98
recovery 97

exit 7 101
JCTJQE usage 101
JQETYPE usage 101
PCEID usage 101

Exit 9 109
exit effector 9, 38

definition 6
tracing 46

exit facility
introduction 1
using 3

exit implementation table 56
exit information table (XIT)

See XIT
exit module 23

security considerations 23
source conventions 23

exit point 3
$STRAKX (Exit 12) 122
$TRACKX (exit 11) 117
definition 3
identifying them 3
logoff 152
logon 151
MICEXIT (exit 18) 152
MSNALXIT (exit 18) 151
MSNALXT2 (exit 18) 152

exit routine 3
definition 3
integration 35
language used 9
load module 36
loading one 29
multiple ones 6, 33
passing them control 40
placement 37
writing one 9

exit routine table (XRT)
See XRT

exit selection table 49
exit-to-exit communication

among exits
exit point-to-exit routine condition byte 20

EXIT(nnn) initialization parameter 27
exits 99

control block read/write 103
Converter/Interpreter text scan 93
execution phase 293
hardcopy phase 297
JCL/JES2 control statement scan 81
JES2 command preprocessor 86
Job Input Service 290
job-related 283
output phase 296
purge phase 299
sequence 283
spin phase 296

exits in processing order 49

external names 35

F
FSACB 11
FSS environment 11
FSSCB 11

G
generic grouping

modifying selection with an exit 239

H
hardcopy

console 156
HASJES20 20, 25

location 10
HASPCOMM 20
HASPINIT 10, 25
HASPIRPL 155
HASPRDR 288

I
I/O 1

control block 101
IBM-defined exits 4

description 49
identifying the exit 23
IEFACTRT 295
IEFUJI 295
IKJ56216I message 166
implementation

exit table 56
implementing initialization statements 155
incoming files

screening 127
initialization 2

&RJOBOPT use 76
EXIT(nnn) parameter 27
EXIT(nnn) statement 3, 36
EXIT(nnn) TRACE= usage 43
exits in the system 36
JCL 29
LOADMOD statement 3
LOADMOD(jxxxxxxx) initialization statement 36
modifying control blocks 173
placement of exits 37
pre-initialization exit 59
processing 2
TSUCLASS statement 131

initialization statement exit 155
$HASP864 message 158
$SCAN facility usage 156
$STMTLOG macro 156
$T EXIT command 156
checking and analyzing 155
CONSOLE 156

Index 325

initialization statement exit (continued)
CONSOLE initialization statement 156
EXIT(nnn) 156
EXIT(nnn) usage 156
implementing 155
LOADmod 156
LOADmod usage 156
tailoring 155

initialization statement scan exit 155
initializing a user defined exit 29
initializing an exit 29
initializing the exit in the system 36
initiator jobs 56

work selection exit 273
input/output

See I/O
inserting initialization statements 155
installation 4

control blocks 173
exits 4
work areas 175

installation-defined exits 45
integrating the exit routine 35
interrogate CMB 113
introduction

checkpoint control blocks 286
job-related exits

exit sequence 283
selected exits 283

job-related Exits 283
spool control blocks 285

IOT 1
isolating an exit error 40

J
JCL (job control language) 1

initializing an exit 29
JCL/JES2 control statement scan exit 56, 81
JCT 283
JCT (job control table) 1

JCTIPTIO usage 160
JCTJOBID usage 76
JCTJQE usage 101
JCTSAMSK usage (Exit 11) 117
JCTSAMSK usage (exit 12) 121
JCTWORK usage 76
JCTXWRK usage 77
job control table 1
job exit mask address 40
read/write 101
selected fields 74

JCT read 176
exit 25 177
recovery 177

JCT read/write exit 56
JES 2 Print /Punch processor 297
JES2 1

$ESTAE macro usage 27
$SCAN facility 60
address space 11

JES2 (continued)
areas of modification 2
dispatching unit (PCE) 13
exit 3
exit effector 9
main task 10
modifying 1
primary load module (HASJES20) 10
processors 13
reentrant sense 13
source language (assembler) 9
subtasks execution 11
terminating 165

JES2 command preprocessor exit 56, 87
JES2 converter exit (JES2 main) 251
JES2 exits

exit 1 298
exit 11 283
exit 12 283
exit 14 296
exit 15 298
exit 16 296
exit 21 300
exit 28 295
exit 30 295
exit 31 295
exit 32 294
exit 33 295
exit 34 295
exit 35 295
exit 36 298, 300
exit 37 298, 300
exit 7 296, 298, 299
exit 8 294, 295
exit 9 283

JES2 Exits
exit 2 283
exit 6 283
exit 7 283
exit 8 283

JES2 main
converter exit 251

JES2 main task 10
JES2 reentrancy 10
JES2 subtask 11
JES2 termination 165
JES2-to-operator communication 2
JMR 1

SMFTYPE field
meaning 164
values 164

usage 78
job 2

end of input exit 158
exit mask (JOBMASK) 40
input processing 2
priority 159
related exits (defined) 5
statement (NOTIFY=) 130
terminating processing 159

326 z/OS V1R4.0 JES2 Installation Exits

job control language (JCL)
See JCL (job control language)

job control table
read write (USER) exit 105

job control table field 76
job exit mask 41
job input 158

end 159
processing 2

job management record
SMFTYPE field

meaning 164
values 164

job management record (JMR)
See JMR

job output
processing 2

job queue 133
finding work (exit 14) 133
work select exit 133

job queue element
See JQE (job queue element)

job queue initiator jobs 56
job queue work select exit 133, 273
job separator page process 168
job statement account field scan exit 56, 72
JOB statement accounting field scan 72

&RJOBOPT use 76
HASPRSCN replacement 73
JCTJOBID usage 76
JCTWORK usage 76
JCTXWRK usage 77
recovery 74
specific description 72

job statement scan exit 56
general description 50

job termination 159
job-related exits 40
JOBMASK parameter 40
jobs

work selection exit 273
JOE (job output element) 1
JOT (job output table) 1
JQE (job queue element) 1

acquiring control (exit 14) 133
acquiring control (exit 49) 273
JQETYPE usage 101

K
keyboard 301

L
licensed documents xii
limiting authorized receivers 129
linkage conventions 13
linkage conventions to exits 13
LMT

See load module table (LMT)
LOAD initialization statement 60

LOAD macro 60
$HASP426 message 59
$HASP427 message 59
$HASP428 message 60
$HASP864 message 62
LOAD macro 60

load module initialization 39
load module table (LMT) 38, 60

usage (exit 0) 60
loading an exit routine 29
log data set 156
logic of an exit 19
logon/logoff

SNA exit 151
LookAt message retrieval tool xii

M
Macro 60

$CWTO 91
$JCAN 166
$STMTLOG 156
LOAD 60

main task 6
protect key 6

main task environment 10
maximum return code 16
MAXRC= operand ($EXIT macro) 16
message 49

$HASP426 49, 59
$HASP427 49, 59
$HASP428 60
$HASP546 130
$HASP548 127
$HASP549 127
$HASP864 62, 158, 174
alter console routing 114
modify $WTO messages (exit 16) 143

message retrieval tool, LookAt xii
methods of packaging the exit 26
MIT 1
MITETBL 1

illustration 36
modification 2

areas in JES2 2
modify

JES2 control blocks 173
modify $WTO messages 143
modifying initialization statements 155
modifying output grouping keys 239
modifying SYSOUT characteristics

exit 235
multiple exit routines 6, 14, 33

linkage conventions 14
single module (example) 33

MVS 13
ESTAE macro usage 27
LOAD macro 60
reentrant sense 13
WTO macro 20
WTOR macro 20

Index 327

MVS WAITS 10

N
naming the exit 23
network data set header (NDH) 127

exit 13 127
network job header (NJH) 127

exit 13 127
NJE data area

modifying prior to its transmission 259
modifying prior to receiving the rest of the NJE

job 265
NJE SYSOUT reception data set disposition exit 231
no output option (TSUCLASS statement) 131
nonreentrant considerations for exits 12
notify exit 143
notify user message

modifying with an exit 243
NOTIFY= option 130

O
operating environment for exits 9
operating states

altering (via $T EXIT(nnn)) 5
disabled 5
enabled 5

operator 2
$CWTO macro (exit 5) 91
$D EXIT(nnn) command usage 43
$T EXIT(nnn) command usage 43
command ($T EXIT(nnn)) 27
communicating from the exit 20
communication with JES2 2

operator-to-exit communication 20
other programming considerations 23
output

data set/copy separator exit 137
output data set/copy separators exit 137
output grouping keys

modifying selection with an exit 239
output processing 2

P
packaging the exit 26, 35
parameter

EXIT(nnn) 27
JOBMASK 40
received by exits 15

parameters
&TSU 131

passing control to exit routines 40
PCE 1

PCEID usage 101
work area for HASPRDR 159

PCE attach/detach exit 183
PCEs 296
peripheral data definition block ($PDDB) 127

exit 13 127

peripheral data definition block ($PDDB) (continued)
PDBFLAG1 usage (exit 13) 132
PDBWTRID usage (exit 13) 132

phases
conversion 291

overview 291
execution

exits 293
overview 293

hardcopy
exits 297
overview 297

input
exits 290
overview 289

output
exits 296
overview 296

purge
exits 299
overview 299

spin
exits 296
overview 296

placement of exits 37
post initialization exit 171, 173
post-security authorization call exit 221
pre-initialization 59

$HASP426 message 59
$HASP428 message 60
$HASP864 message 62
LOAD macro 60
specific description 59

pre-initialization exit 56
$HASP426 message 49
$HASP427 message 49
general description 49

pre-security authorization call exit 215
pre-SFJ service request exit 255
print/punch 62

$SEPPDIR usage 65
specific description 62

print/punch job separator exit 62
general description 49

print/punch separator exit 56
priority 159
processing 40

disabled exits 40
enabled exits 40
job-related exits 40

processing area, exit arrangement 49
processor control element

See PCE
processors invoking exits 49
programming considerations 14

$ENTRY macro 23
addressability of the exit 23
exit initialization 36
exit logic 19
exit-to-operator communication 20
integrating the exit routine 35

328 z/OS V1R4.0 JES2 Installation Exits

programming considerations (continued)
multiple exit routines 14
naming the exit 23
other ones for exits 23
packaging the exit 26, 35
passing control to exit routines 40
recovery for exits 27
security 23
service routine usage 19
source module conventions 23
testing exit routines 35
tracing status of exits 43
tracing the exit 27

Q
queue SMF records 163

R
RECEIVE command 128

TSO/E recovery 128
received parameters for exits 15
receivers

limiting 129
record, job management

SMFTYPE field
meaning 164
values 164

Recovery 191
exit 13 128
exit 24 173
exit 27 185
exit 28 187
exit 29 191
exit 30 193
exit 31 197
exit 32 201
exit 33 205
exit 34 209
exit 35 213
exit 36 215
exit 37 221
exit 38 227
exit 4 82
exit 42 243
exit 5 89
exit 6 97

recovery for exits 27
reentrant

JES2 sense 13
MVS sense 13

reentrant considerations for exits 12
register

linkage information for exits 13
remote attribute table (RAT) 148

usage (exit 17) 148
usage (exit 18) 152

remote job entry (RJE) 3
BSC sign-on/sign-off exit 147
processing 3

remote job entry (RJE) (continued)
SNA logon/logoff exit 151

replacing initialization statements 155
requirements, addressing

$AMODE
AMODE 15

31-bit 15
residency 15
RMODE 15

response byte
exit routine-to-exit point

communication 20
restore caller’s registers 14

$RETURN macro 14
return codes from exits 16
routine 19

$QGET (exit 14) 133
$QGET (exit 49) 273
TSO/E INXP macro 131
used by exits 19

S
save caller’s registers 14

$SAVE macro 14
scan

accounting field 72
Converter/Interpreter text (exit 6) 95
initialization statement exit 155
JCL/JES2 control statements 81

screen incoming files (exit 13) 127
security 23
security considerations 23
selecting an exit 49
selection of initiator jobs 56
separator pages

copies 137
data sets 137

service request exit 255
service routine usage 19
service routines 19

usage 19
services for synchronizing 12
shortcut keys 301
sign-on/sign-off

BSC exit 147
single module for multiple exit routines 33
SMF 1

control block creation/alteration 163
queueing records 163
record exit 163

SMF exits 283
SMF record exit 162
SMFWTM macro 300
SNA RJE devices, controlling 151
SNA RJE logon/logoff exit 151
source module conventions 23
specific description 87, 105, 113, 117, 127, 133, 137,

143, 147, 151, 158, 162, 164, 168
$CWTO macro 91
$GETSMFB usage 163

Index 329

specific description (continued)
$HASP546 message 130
$HASP548 message 127
$HASP549 message 127
$HASP864 174
$JCAN macro 166
$P Q command 130
$QUESMFB usage 163
$STRAKX exit point 122
$T EXIT command usage 174
$TRACKX exit point 117
$USER1 through $USER5 175
CCW translate table usage 137
change notify routine 143
CMB usage 143
CMBFLAG usage 114
CMBJOBN usage 114
CMBROUT usage 114
CMBTEXT usage 114
COMAUTH structure 90
D37 abend 131
EXITnnn statement 174
finding job queue work 133
IKJ56216I message 166
INXP macro 131
JCTIPTIO usage 160
JCTSAMSK usage 117, 121
MICEXIT exit point 152
modify $WTO messages 143
MSNALXIT exit point 151
MSNALXT2 exit point 152
network data set header (NDH) 127
network job header (NJH) 127
NOOUTPUT option 131
NOTIFY= option 130
PCE work area usage 159
PDBFLAG1 usage 132
PDBWTRID usage 132
peripheral data definition block ($PDDB) 127
PRTRANS table 137
RECEIVE command 128
recovery 89, 173, 177
screen incoming files 127
specific description 171, 173, 176
TRANSMIT command 130
TSUCLASS statement 131

specific uses of exits 49
spool 2

partitioning allocation ($STRAK) 121
partitioning allocation ($STRAK) exit 121
partitioning mask (JCTSAMSK) 117
processing 2

spool control blocks 285
spool partitioning allocation ($STRAK) exit 121
spool partitioning allocation exit ($TRACK) 117
SSI data set allocation exit 197
SSI data set CLOSE exit 205
SSI data set OPEN and restart exit 193
SSI data set unallocation exit 209
SSI end-of-memory exit

(JES2) 189

SSI end-of-memory JES2 exit 189
SSI end-of-task exit 213
SSI job selection exit 201
SSI job termination exit

(JES2) 186
SSI job termination JES2 exit 186
SSI SYSOUT data set unallocation exit 269
status

changing exit status 40
exit 164
exit status 40
tracing exit status 43

subtask 6
protect key 6

subtask environment 11
synchronization services 12

for exits 12
main task

$WAIT macro 12
SYSOUT characteristics

exit to change 235
system affinity 159
system initializing for exits 36
system management facilities (SMF)

record exit 162

T
tables 37

CCW translate table (exit 15) 137
exit implementation table 56
exit selection table 49
LMT 38
PRTRANS table (exit 15) 137
XIT 37
XRT 37

tailoring initialization statements 155
termination exit 179, 181
termination JES2 exit 179
testing 27

exit routines 35
tracing usage 27
TYPE=TEST ($EXIT macro) 45

TGB 1
titles of exits 49
tracing 27

$D EXIT(nnn) command usage 43
$T EXIT(nnn) command usage 43
automatic tracing 46
automatically 27
AUTOTR= ($EXIT macro) 46
disabled (exit 19) 156
enabling trace (ID 13) 27, 43
exit effectors 46
exit status 43
exits 27
job-related tracing 43
necessary conditions 27
TRACE= usage on EXIT(nnn) 43

tracing status of exits 43

330 z/OS V1R4.0 JES2 Installation Exits

transaction program (TP)
selection/change/termination exit 247

TRANSMIT command 130
TSO/E CANCEL/STATUS (exit 22) 165
TSO/E interactive data transmission facility screening

and notification exit 127
TSO/E OUTLIM parameter 131
TSO/E receive data set disposition exit 227
TSUCLASS initialization statement 131

U
use of exit facility 3
user address 6

protect key 6
user address space environment 9
User Control Table 175

usage 175
USER environment 11
using control blocks in exits 16
using service routines in exits 19

V
verify a job’s existence 76

W
weak external names 35
WLM initiator jobs

work selection exit 273
work

select exit 133
work area 77

$USER1 through $USER5) 175
CNVWORK 98
HASPRDR PCE 159
JCTXWRK (exit 3) 77

workload selection 56
writing an exit routine 9

X
XIT 1

building 37
XRT 1

building 37

Index 331

332 z/OS V1R4.0 JES2 Installation Exits

Readers’ Comments — We’d Like to Hear from You

z/OS
JES2 Installation Exits

Publication No. SA22-7534-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7534-03

SA22-7534-03

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

SA22-7534-03

	Contents
	Figures
	Tables
	About this document
	Who should use tThis document
	How this document is organized
	Where to find more information
	Additional information

	Summary of changes
	Chapter 1 - introduction
	What is a JES2 exit?

	Chapter 2 - writing an exit routine
	Language
	Operating environment
	JES2 environments
	Synchronization
	Reentrant code considerations
	Linkage conventions
	Addressing mode of JES2 exits
	Received parameters
	Return codes
	Control blocks
	Determining the JES2 release level
	Service routine usage
	Exit logic
	Exit-to-exit communication
	Exit point-to-exit routine communication
	Exit routine-to exit point communication
	Exit-to-operator communication
	Required mapping macros

	Controlling the loading of installation-defined load modules
	Tracing
	Recovery

	Enabling an exit
	Sample exit routines
	Multiple exit routines in a single module
	Testing your exit routine
	Packaging the exit
	Initializing the exit in the system
	Passing control to exit routines
	Job-related exits

	Tracing status
	Establishing installation-defined exits
	Hints for coding JES2 exit routines
	Assembler instructions
	Constants
	DSECTs
	Registers
	Miscellaneous

	Chapter 3 - IBM-defined exits
	Exit selection table
	Exit implementation table

	Exit 0: pre-initialization
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 0 gets control
	Register contents when exit 0 passes control back to JES2
	Coded example

	Exit 1: print/punch separators
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 1 gets control
	Register contents when control passes back to JES2:
	Coded example

	Exit 2: JOB JCL statement scan
	Function
	Recommendations for implementing exit 2
	Environment
	Point of processing
	Extending the JCT control block
	Programming considerations
	Register contents on entry to exit 2
	Register contents when exit 2 passes control back to JES2
	Coded example

	Exit 3: JOB statement accounting field scan
	Function
	Related exits
	Environment
	Point of processing
	Extending the JCT control block
	Programming considerations
	Register contents when exit 3 gets control
	Register contents when exit 3 passes control back to JES2
	Coded example

	Exit 4: JCL and JES2 control statement scan
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 4 gets control
	Register contents when exit 4 passes control back to JES2
	Coded example

	Exit 5: JES2 command preprocessor
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 5 gets control
	Register contents when exit 5 passes control back to JES2
	Coded example

	Exit 6: JES2 converter exit (subtask)
	Function
	Related exits
	Recommendations for implementing exit 6
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 6 gets control
	Register contents when exit 6 passes control back to JES2
	Coded example

	Exit 7: control block I/O (JES2)
	Function
	Related exits
	Recommendations for implementing exit 7
	Programming considerations
	Point of processing
	Environment
	Register contents on entry to exit 7
	Register contents when exit 7 passes control back to JES2
	Coded example

	Exit 8: control block read/write (user, subtask, and FSS)
	Function
	Related exits
	Programming considerations
	Point of processing
	Environment
	Register contents on entry to exit 8
	Register contents on return to JES2
	Coded example

	Exit 9: output excession options
	Function
	Related exits
	Environment
	Point of processing
	Programming considerations
	Register contents on entry to exit 9
	Register contents when exit 9 passes control back to JES2
	Coded example

	Exit 10: $WTO screen
	Function
	Environment
	Point of processing
	Programming considerations:
	Register contents when exit 10 gets control
	Register contents when exit 10 passes control back to JES2
	Coded example

	Exit 11: spool partitioning allocation ($TRACK)
	Function
	Related exits
	Recommendations for implementing exit 11
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 11 gets control
	Register contents when exit 11 passes control back to JES2
	Coded example

	Exit 12: spool partitioning allocation ($STRAK)
	Function
	Related exits
	Recommendations for implementing exit 12
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 12 gets control
	Register contents when exit 12 passes control back to JES2
	Coded example

	Exit 13: TSO/E interactive data transmission facility screening and notification
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 13 gets control
	Register contents when exit 13 passes control back to JES2
	Coded example

	Exit 14: job queue work select – $QGET
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 14 gets control
	Register contents when exit 14 passes control back to JES2
	Coded example

	Exit 15: output data set/copy select
	Function
	Programming considerations
	Environment
	Point of processing
	Contents of registers on entry to exit 15
	Contents of register when exit 15 returns to JES2
	Coded example

	Exit 16: notify
	Function
	Environment
	Mapping macros normally required
	Point of processing
	Programming considerations
	Register contents when exit 16 gets control
	Register contents when exit 16 passes control back to JES2
	Coded example

	Exit 17: BSC RJE SIGNON/SIGNOFF
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 17 gets control
	Register contents when exit 17 passes control back to JES2
	Coded example

	Exit 18: SNA RJE LOGON/LOGOFF
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 18 gets control
	Register contents when exit 18 passes control back to JES2
	Coded example

	Exit 19: initialization statement
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 19 gets control
	Register contents when exit 19 passes control back to JES2
	Coded example

	Exit 20: end of input
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 20 gets control
	Register contents when exit 20 passes control back to JES2
	Coded example

	Exit 21: SMF record
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 21 gets control
	Register contents when exit 21 passes control back to JES2
	Coded example

	Exit 22: cancel/status
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 22 gets control
	Register contents when exit 22 passes control back to JES2
	Coded example

	Exit 23: FSS job separator page (JSPA) processing
	Function
	Recommendations for implementing exit 23
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 23 gets control
	Register contents when exit 23 passes control back to JES2
	Coded example

	Exit 24: post initialization
	Function
	Environment
	Point of processing
	Creating an information string through exit 24
	Programming considerations
	Register contents when exit 24 gets control
	Register contents when exit 24 passes control back to JES2
	Coded example

	Exit 25: JCT read
	Function
	Related exits
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 25 gets control
	Register contents when exit 25 passes control back to JES2
	Coded example

	Exit 26: termination/resource release
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 26 gets control
	Register contents when exit 26 passes control back to JES2
	Coded example

	Exit 27: PCE attach/detach
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 27 gets control
	Register contents when exit 27 passes control back to JES2
	Coded example

	Exit 28: subsystem interface (SSI) job termination
	Function
	Environment
	Point of processing
	Programming considerations
	Expanding the JCT control block
	Register contents when exit 28 gets control
	Register contents when exit 28 passes control back to JES2
	Coded example

	Exit 29: subsystem interface (SSI) end-of-memory
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 29 gets control
	Register contents when exit 29 passes control back to JES2
	Coded example

	Exit 30: subsystem interface (SSI) data set OPEN and RESTART
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 30 gets control
	Register contents when exit 30 passes control back to JES2
	Coded example

	Exit 31: subsystem interface (SSI) allocation
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 31 gets control
	Register contents when exit 31 passes control back to JES2
	Coded example

	Exit 32: subsystem interface (SSI) job selection
	Function
	Related exits
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 32 gets control
	Register contents when exit 32 passes control back to JES2
	Coded example

	Exit 33: subsystem interface (SSI) data set CLOSE
	Function
	Related exits
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 33 gets control
	Register contents when exit 33 passes back control to JES2
	Coded example

	Exit 34: subsystem interface (SSI) data set unallocation
	Function
	Related exits
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 34 gets control
	Register contents when exit 34 passes control back to JES2
	Coded example

	Exit 35: subsystem interface (SSI) end-of-task
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 35 gets control
	Register contents when exit 35 passes control back to JES2
	Coded example

	Exit 36: pre-security authorization call
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 36 gets control
	Register contents when exit 36 passes control back to JES2
	Coded example

	Exit 37: Post-security authorization call
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 37 gets control
	Register contents when exit 37 passes control back to JES2
	Coded example

	Exit 38: TSO/E receive data set disposition
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 38 gets control
	Register contents when exit 38 passes control back to JES2
	Coded example

	Exit 39: NJE SYSOUT reception data set disposition
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 39 gets control
	Register contents when exit 39 passes control back to JES2
	Coded example

	Exit 40: modifying SYSOUT characteristics
	Function
	Environment
	Point of processing
	Programming considerations
	Contents of registers at entry to exit 40
	Contents of register prior to returning to JES2
	Coded example

	Exit 41: modifying output grouping key selection
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 41 gets control
	Register contents when exit 41 passes control back to JES2
	Coded example

	Exit 42: Modifying a notify user message
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 42 gets control
	Register contents when exit 42 passes control back to JES2
	Coded example

	Exit 43: APPC/MVS TP selection/change/termination
	Function
	Related exits
	Recommendations for implementing exit 43
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 43 gets control
	Register contents when exit 43 passes control back to JES2
	Coded example

	Exit 44: JES2 converter exit (JES2 main)
	Function
	Related exits
	Recommendations for implementing exit 44
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 44 gets control
	Register contents when exit 44 passes control back to JES2
	Coded example

	Exit 45: Pre-SJF service request
	Function
	Environment
	Point of processing
	Register contents when exit 45 gets control
	Register contents when exit 45 passes control back to JES2
	Coded example

	Exit 46: Modifying an NJE data area prior to its transmission
	Function
	Related exits
	Recommendations for implementing exit 46
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 46 gets control
	Register contents when exit 46 passes control back to JES2
	Coded example

	Exit 47: Modifying an NJE data area before receiving the rest of the NJE job
	Function
	Related exits
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 47 gets control
	Register contents when exit 47 passes control back to JES2
	Coded example

	Exit 48: Subsystem interface (SSI) SYSOUT data set unallocation
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 48 gets control
	Register contents when exit 48 passes control back to JES2
	Coded example

	Exit 49: Job queue work select - QGOT
	Function
	Environment
	Point of processing
	Programming considerations
	Register contents when exit 49 gets control
	Register contents when exit 49 passes control back to JES2
	Coded example

	Appendix A. JES2 exit usage limitations
	Appendix B. Sample code for exit 17 and 18
	Appendix C. Job-related exit scenarios
	Exit sequence
	Selected exits
	SPOOL control blocks
	Checkpoint control blocks
	$JCT/JMR relationship
	Input phase
	Conversion phase
	Execution phase
	Spin phase
	Output phase
	Hardcopy phase
	NJE hardcopy phase exits
	Purge phase

	Appendix D. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

